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Abstract— We consider pursuit-evasion games in which the
pursuer is tasked with intercepting the evader using only partial
measurements. Motivated by the utilization of visual sensing on
board the pursuer, we focus on the case when only bearing
measurements are available to the pursuer. The resulting
partially-observable interception problem is computationally
challenging, and the separation principle does not hold in
general. In this paper, we identify a set of maneuvers that
improve observability, and we propose an algorithm that utilizes
these maneuvers to move the pursuer so that the expected payoff
of the differential game is maximized. The algorithm uses in-
the-loop uncertainty propagation based on linear covariance
analysis to assess the effect of the maneuvers. We evaluate the
resulting guidance law in experiments involving a quadcopter
in flight representing the pursuer, and a simulated evader.

I. INTRODUCTION

Recent years have witnessed a surge in personal ownership
of unmanned aerial vehicle (UAV) systems. Today, off-the-
shelf multicopters are widely available, and consumers are
able to fly them without any prior training. UAVs flown by
amateur pilots may cause dangers, e.g., in the proximity of
large crowds and near airports. These concerns are exacer-
bated in the presence of UAVs that are purposely deployed
for surveillance, disturbance, or other malicious activities.
In light of these fears, several countries have started to
implement more rigorous regulations. However, enforcement
of these regulations is not straightforward, especially towards
eliminating the risk of adversarial UAVs [1]. Several mea-
sures to achieve this goal have been considered, e.g., radio
frequency jammers and ground-based net launchers [2].

We are motivated by the development of autonomously
pursuing UAVs that can intercept and capture their adver-
sarial evading counterparts. We define interception as the
nulling of the relative distance between the pursuer and
its adversary. After interception takes place, the adversary
can be captured, e.g., through collision or by using a
catching mechanism [3]. We model the interception task
as a pursuit-evasion differential game, so that the resulting
guidance law is a minmax optimal control law, meaning that
it achieves the optimal performance against the worst-case
evasive action [4]. More specifically, we are interested in
the case where the pursuer can acquire only measurements
of the evader’s relative bearing. The scenario represents
autonomous pursuit using a low-cost, lightweight UAV that
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is equipped with only a monocular camera and has no access
to extraneous measurements, such as ground radar.

Solving differential games is a challenging task. Most
analytical solutions only apply to simple, e.g., linear, problem
instances [4]; and most numerical solutions are doomed by
the curse of dimensionality [5]. When only partial measure-
ments are available, as in the case we consider in this paper,
the problem is further complicated from both an analytical
and a computational point of view, and the notion of tracking
observability is introduced [6], [7]. In most realistic scenarios
where the pursuer can only obtain partial measurements of
the state of the evader, the certainty equivalence principle
does not hold for nonlinear control [8]; and exact solutions
require working with infinitely many belief state variables,
as both players need to maintain knowledge of what their
opponent knows about what they know about what their
opponent knows, ad infinitum [9]. Various control modifica-
tions that address bearings-only interception can be found in
literature, e.g., line-of-sight oscillations [10], filter covariance
eigenvalue minimization [11], and nonlinear sliding mode
control with variable damping [12].

For our proposed guidance law design, we divide the
pursuit into three phases: In the first phase, which we call
the observability maneuvering phase, the pursuer maneuvers
to improve its estimation of the evader’s relative position and
velocity. In the second phase, which we call the pre-terminal
guidance phase, the pursuer engages a guidance law based on
a continuously-updated estimate of the relative position and
velocity of the evader. The main objective of this phase is to
get closer to the evader. In the third phase, which we call the
terminal guidance phase, the pursuer and evader both engage
in complex maneuvers.The main objective of this phase is to
capture the evader.

In this paper, we focus on the first phase, namely the
observability maneuvering phase. The goal of the observ-
ability maneuvering is to improve the expected game utility,
i.e., to increase the probability of successful interception by
improving the quality of the estimate of the evader state.
This is complicated by the fact that the system may be
locally unobservable. Since there does not exist a global
observability condition for nonlinear systems, we utilize the
extended output Jacobian (EOJ) to analyze local observabil-
ity and to propose maneuvers that improve the state estimate.
The expected game utility is computed online using closed-
loop uncertainty propagation. For this purpose, we utilize
linear covariance analysis (LCA), which can be seen as a
linearized version of Monte Carlo analysis (MCA). The LCA
approximates nonlinear uncertainty propagation in a single



run by linearizing the dynamics, measurement, and control
equations around a nominal trajectory [7], [13]. LCA is
commonly applied to enable quick iterations in guidance,
navigation, and control (GNC) design [13], [14]. We show
that its computational efficiency makes it an excellent tool
for online uncertainty propagation, as the pursuer assesses
the expected value of the game after a certain maneuver.

This paper has three main contributions. First, we derive
certain maneuvers, based on an analysis of the extended
output Jacobian, that improve the expected value of the game.
Second, we propose an uncertainty propagation method,
based on the linear covariance analysis, that allows us to
estimate the expected value of the game in a computationally
efficient manner. Third, we present a practical framework
on guidance for partially-observable interception, and we
validate the guidance law design using experiments involving
a quadrotor in flight pursuing a simulated evader.

The paper is organized as follows. In Section II, we for-
malize the differential game and analyze its local observabil-
ity. An overview of the guidance law including observability
maneuvers and LCA is given in Section III. Section IV
contains computational and real-world experimental results.
Finally, conclusions are presented in Section V.

II. INTERCEPTION DYNAMICS AND OBSERVABILITY

We consider the interception scenario shown in Fig. 1.
The pursuing quadrotor aims to intercept the adversarial
aircraft, i.e., the evader, using relative angle measurements.
We assume that the quadrotor has accurate knowledge of its
own state. Hence, we focus on the estimation of the relative
position and velocity of the evader.

A. Pursuit-Evasion Dynamics

The evader is modeled using Dubins vehicle kinematics
[15]. It performs smooth turns at constant altitude. Since the
pursuer velocity is assumed known, it is considered an input
to the interception dynamics. The resulting system of relative
dynamics is given by

ẋ1 = u1 − Ve cosχ,
ẋ2 = u2 + Ve sinχ,

ẋ3 = u3,

χ̇ = vχ,

(1)

where the state x = [x1 x2 x3 χ]
T ∈ R3 × T consists of

the evader position with regard to the pursuer in the inertial
reference frame, and the evader heading angle χ. The symbol
T denotes the circle group. The known pursuer velocity
vector is indicated by u = [u1 u2 u3]

T ∈ R3. The evader
control input vχ ∈ R corresponds to its heading rate, and
Ve ∈ R is the constant evader speed. For convenience of
notation, we define the following vectors:

R = [x1 x2 x3]
T
, (2)

Rh = [x1 x2 0]
T
, (3)

Ve = [−Ve cosχ Ve sinχ 0]
T
. (4)

Fig. 1: Pursuit-evasion scenario overview.

An unscented Kalman filter (UKF) based on (1) is used
for state estimation during the observability maneuvering
and pre-terminal guidance phases. During these phases, it is
assumed that no strong evasive maneuvering is performed by
the evader. This justifies the constant-altitude Dubins vehicle
model. The evader input is modeled as white noise. For an
overview of the UKF equations, the reader is referred to [16].

B. Nonlinear Observability

In this section, we consider the observability of the non-
linear dynamics system. We derive necessary and sufficient
conditions for local weak observability.

The pursuer obtains the measurement vector y = [α β]
T ∈

T × [−π2 , π2 ] from its omnidirectional sensor. The azimuth
angle α and attitude angle β are defined as

α = h1(x) = arctan2(−x2, x1),
β = h2(x) = arcsin

(x3
R

) (5)

with arctan2 the multi-valued inverse tangent function, and
R = ‖R‖ the relative Euclidean distance between pursuer
and evader. By combining these two measurements, the
pursuer is able to determine the relative direction of the
evader. However, the evader orientation χ and distance R
are not directly observable.

In contrast to the case where linear measurements and
linear differential equations are considered, global observ-
ability cannot be established for the scenario considered
here. Instead, we use the notion of local weak observability
through the extended output Jacobian, as introduced in [17].
Intuitively, a state x0 is said to be locally weakly observable
if it can be distinguished from its neighbors instantaneously
[17].

The EOJ provides a sufficient observability rank condition
for local observability at a state x0. The nonlinear system
consisting of the kinematic model (1), and the measurement
equations (5) is locally weakly observable at x0, if the EOJ
matrix with rows

J = { ∂h
j−1
i

∂x

∣∣∣∣∣
x=x0

|i = 1, 2; j = 1, . . . , 4} (6)



is full rank [18]. The superscript j denotes the j-th temporal
derivative of the measurement function. Full rankness of at
least one 4 × 4 submatrix of the 8 × 4 EOJ is sufficient
to guarantee local observability [18]. Expressions for the
higher-order derivatives of the measurement functions are
mathematically quite involved and not suitable for the for-
mulation of a usable observability condition. Moreover, in
practice when measurements are noisy, these higher-order
derivatives can rarely be obtained with sufficient accuracy,
therefore we consider the following submatrix:

J′ =


∂h1

∂x1

∂h1

∂x2

∂h1

∂x3

∂h1

∂χ
∂ḣ1

∂x1

∂ḣ1

∂x2

∂ḣ1

∂x3

∂ḣ1

∂χ
∂h2

∂x1

∂h2

∂x2

∂h2

∂x3

∂h2

∂χ
∂ḣ2

∂x1

∂ḣ2

∂x2

∂ḣ2

∂x3

∂ḣ2

∂χ

 (7)

with

det(J′) = Ve
(x1 cosχ− x2 sinχ)u3√

x21 + x22R
2

+

Ve
x3(Ve − u1 cosχ+ u2 sinχ)√

x21 + x22R
2

. (8)

We note that the sufficient rank observability condition
may require that the inputs are known. However, in this
case the evader input does not appear in the measurement
equations or in their temporal derivatives, and thus does not
affect observability. Interpretation of (8) allows us to formu-
late practical conditions that render the system unobservable.
We consider four events corresponding to the factors of the
two terms of (8):

(e-i) (x1 cosχ− x2 sinχ) = 0 ⇐⇒ Ve ⊥ Rh,
(e-ii) u3 = 0 ⇐⇒ ẋ3 = 0,
(e-iii) Ve − u1 cosχ+ u2 sinχ = 0 ⇐⇒ Ṙh ⊥ Ve,
(e-iv) x3 = 0

The intersection of events between terms corresponds to
singularity of J′, e.g., (e-i)∧(e-iii) =⇒ det(J′) = 0. In
this manner, the following singularity conditions at which
observability is not guaranteed can be constructed: (e-i)∧(e-
iii), (e-i)∧(e-iv), (e-ii)∧(e-iii), and (e-ii)∧(e-iv). Additionally,
there is a fifth event that directly causes singularity in itself:

(e-v) Ve(x1 cosχ−x2 sinχ)u3+Vex3(Ve−u1 cosχ+
u2 sinχ) = 0,

which can be rewritten as

Ve
x1 cosχ− x2 sinχ

x3
= Ve

−Ve + u1 cosχ− u2 sinχ
u3

(9)

or
−Ve

TRh

x3
=
−Ve

T Ṙh

u3
. (10)

The singularity events present a clear geometric interpreta-
tion of when observability is lost, and are visually depicted
in Fig. 2. By (8), there exists a non-empty subset of the
state-space for which the EOJ is singular, consequently the
rank observability condition is sufficient and necessary [18].
Therefore the system is not weakly locally observable when
the singularity conditions are met.

III. VISION-BASED GUIDANCE USING LINEAR
COVARIANCE ANALYSIS

In this section, we detail the various aspects of the vision-
based guidance law design. The interception guidance law
consists of three phases.

The first, or observability maneuvering, phase is the main
focus of our analysis in this paper. During this phase, the
distance between pursuer and evader is still relatively large.
The pursuer performs maneuvers to increase the quality of
its relative state estimate.

The second, or pre-terminal guidance, phase starts when
the pursuer deems its relative state estimate of sufficient
quality to start interception. A simple guidance law, such
as deviated pure pursuit, may be used during this phase,
because the relative distance is still large and therefore no
evasive action is expected.

The third and final phase consists of terminal guidance.
In this phase a differential games-based guidance law is
employed to achieve a guaranteed miss distance despite
possible aggressive evasive action. This controller is based
on state feedback and thus requires a sufficiently accurate
state estimate to achieve satisfactory performance.

A. Linear Covariance Analysis

The goal of the observability maneuvering phase is to
improve the relative state estimate. The phase is concluded
when the state estimate variance is sufficiently low, such that
the pursuer can successfully execute the pre-terminal and
terminal guidance laws based on the estimated state. In this
context, the probability of success is given by the probability
of capture, i.e., the probability that the condition R ≤ rc,
with rc the capture radius, is satisfied during the terminal
guidance phase.

The transition to the pre-terminal guidance phase can be
formulated as an uncertainty propagation problem, where
the transition depends on the probability of interception as
a function of the current state estimate and its covariance.
The uncertainty propagation needs to take into account
the system dynamics, measurement equations, and guidance
law. If dynamics and measurement equations are nonlinear,
Monte Carlo analysis is typically used to address the closed-
loop uncertainty propagation. However, MCA may require
several hundreds or thousands of samples, making online
computation infeasible [19].

To enable real-time uncertainty propagation, we resort to
linear covariance analysis. This method can be considered a
linearized version of Monte Carlo analysis, where nonlinear
dynamics, measurement, and control models are linearized
around a mean reference trajectory. Granted the validity of
the linearization, LCA is able to obtain the same statistics as
MCA at a fraction of the computational cost.

The LCA algorithm consists of two stages: First, a single
noiseless nonlinear simulation run is performed to obtain
the nominal trajectory. Next, the Gaussian state variance is
propagated along this nominal trajectory, using the linearized
dynamics, measurement, and control models. The reader
is referred to [13] for further details on linear covariance
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Fig. 2: Geometric representation of singularity conditions of J′. Using the geometric interpretation, we can formulate
maneuvers to avoid the singularity conditions. Singularities are caused by cancellation of measurements, as follows: (a)
Ṙh ‖ Rh, so Rh does not rotate. Hence, α̇ = 0. (b) x3 = 0, so β = 0; α̇ 6= 0, but does not provide sufficient information
to estimate both Rh and χ, if β = 0. (c) Inspection of J′ shows that under this condition the measurement derivatives
only have non-zero partials with regard to χ, leaving three states to be observed with the two angular measurements. (d)
x3 = ẋ3 = 0, so that β = β̇ = 0. (e) The pursuer is climbing straight towards the evader, leading to β̇ = 0.

analysis. For brevity purposes, we will only state the current
implementation in this section.

The LCA truth model is expressed as

ẋ = f(x,u) + Bw (11)

with f given by (1), B the process noise gain matrix de-
signed to represent model uncertainty due to unknown evader
control input, and w continuous Gaussian process noise with
spectral density Sw. The control input is computed according
to some control law

u = g(x̂), (12)

and the system measurement vector is obtained as

ỹ = h(x) + ν (13)

with h given by (5), and ν a Gaussian measurement noise
vector with covariance Rν . LCA is based on a closed-loop
system with extended Kalman filter (EKF). Incorporation of
the UKF that is used for state estimation is not straightfor-
ward, as it is based on nonlinear propagation equations.

The nominal nonlinear simulation run is performed ac-
cording to (11), (12), and (13). The run is initialized using
the UKF state estimate, and Sw and Rν are set to zero.
The resulting trajectory is considered the nominal trajectory
x̄. Due to its idealized noiseless nature, the nominal trajec-
tory virtually always terminates with perfect capture of the
evader, i.e., Rf = 0 up to numerical precision with Rf the

distance between pursuer and evader at termination of the
guidance law. We are interested in uncertainty propagation
to determine the expected dispersion of the state with regard
to the nominal trajectory. Using the dispersion distribution,
we are able to calculate confidence intervals, and thus the
probability of capture for some capture radius rc.

For the main LCA run, the state and covariance propaga-
tion are linearized along the nominal trajectory. We will first
give the nonlinear equations and then show the linearized
system that is used in LCA.

The EKF propagation equations for the estimated state and
its covariance are

˙̂x = f(x̂,u) (14)

and
Ṗ = Fx̂P + PFx̂

T + Sw (15)

with Fx̂ = ∂f(x,u)
∂x

∣∣∣
x=x̂

. When a measurement is received
the estimated state and covariance are updated according to

x̂+ = x̂− + K(ỹ − h(x̂−)) (16)

with K the Kalman gain (see, e.g., [16]), and

P+ = (I−KHx̂P−(I−KHx̂)
T + KRνKT (17)

with Hx̂ = ∂h(x)
∂x

∣∣∣
x=x̂

.
We define the augmented state

X =

[
δx
δx̂

]
, (18)



consisting of the true dispersion δx of the actual state
with regard to the nominal trajectory x̄, and the navigation
dispersion δx̂ of the filter state with regard to the nominal
trajectory. The update equations are given by

Ẋ = FX +Ww, (19)

X+ = AX− +Dν (20)

with

F =

[
Fx̄ FuGx̂

0 Fx̂ + FuGx̂

]
, (21)

W =

[
B
0

]
, (22)

A =

[
I 0

KHx̄ I−KHx̂

]
, (23)

D =

[
B
0

]
, (24)

and Gx̂ = ∂g(x)
∂x

∣∣∣
x=x̂

. Since we are interested in the variance

CA = E
[
XXT

]
, we directly calculate it, as follows:

ĊA = FCA + CAFT +WSwWT , (25)

C+
A = AC−AAT +DRνDT . (26)

We initialize CA using the current UKF state covariance.
By integration of (25) and (26), the state dispersion variance
of the closed-loop system can be propagated in a single run.
By doing so, we are able estimate the probability of capture
Prcap = Pr(Rf < rc), where Rf is taken at the termination
time according to the nominal trajectory.

The distribution of Rf is to be obtained from the upper-left
block of CA. Note that this is the variance of the state vector
as defined in (1), which must first be transformed to obtain
the distribution of Rf . The transformation can be done either
analytically considering the distribution of the Euclidean
norm of the Gaussian vector R [20], or numerically, e.g.,
using the unscented transform [16].

Based on the probability of capture, it is then decided
to switch between observability maneuvers, or – when the
probability is sufficiently large – to initiate the pre-terminal
guidance phase. Details on the switching strategy are given
in Section III-C.

B. Observability Maneuvers

If linear covariance analysis determines that the probability
of interception is not sufficient to commence the pre-terminal
guidance phase, this may indicate that the observability
matrix is singular or may enter a singularity during the
LCA trajectory. In this case, observability can be improved
by moving the state away from the singularity. This is
done using so-called observability maneuvers. Based on the
singularity events defined in Section II, four maneuvering
directions are defined: (m-i) in the direction of Ve, (m-ii)
perpendicular to Ve towards the evader in the horizontal
plane, (m-iii) along x3 towards the evader, and (m-iv)
diagonally in the combined direction of (m-i)–(m-iii). The

trajectories are planned with respect to the evader position
and velocity as estimated by the UKF. Comparison to Fig. 2
shows how these maneuvers are able to resolve or avoid the
singularity conditions:

• The horizontal maneuvers (m-i) and (m-ii) are perpen-
dicular, therefore at least one will cause a rotation of
Rh and will resolve the condition in Fig. 2a.

• The vertical maneuver (m-iii) and — to a lesser extent
— the diagonal maneuver (m-iv) cause vertical separa-
tion and will thereby resolve the condition in Fig. 2b.

• The vertical maneuver (m-iii) and the diagonal maneu-
ver (m-iv) will enforce a non-zero vertical separation
speed. Maneuver (m-i) in the direction of Ve will avoid
the event Ṙh ⊥ Ve. Hence, all of these maneuvers can
be used to address the condition in Fig. 2c.

• The vertical and diagonal maneuvers (m-iii) and (m-iv),
respectively, both guarantee non-zero vertical separation
and speed, and thereby address the condition in Fig. 2d.

• Any maneuver that is not perpendicular to Ve or aimed
directly at or away from the evader is able to resolve the
condition in Fig. 2e. Hence, (m-i), (m-iii), and (m-iv)
are generally appropriate.

The maneuver selection method is based on LCA and de-
scribed in the next section.

C. Switching Strategy
The switching strategy forms the heart of the guidance law

design. Based on the probability of capture obtained from the
LCA, the next observability maneuver or phase transition is
commanded. For comparison to a desired value Prdes, which
is deemed sufficient to start the pre-terminal guidance phase,
the probability of capture is computed using

• a single LCA instance under the pre-terminal guidance
law, e.g., deviated pure pursuit.

If the condition Prcap ≥ Prdes is satisfied, the pre-terminal
guidance phase is immediately started. If this condition is not
satisfied, the guidance law first aims to improve the quality
of the state estimate. For this purpose, the effects of different
sequences of N observability maneuvers are assessed by

• 4N LCA instances, each under a sequence of N ma-
neuvers followed by the pre-terminal guidance law.

The maneuver sequence corresponding to the largest prob-
ability of capture is selected. During execution of the se-
quence, the switching algorithm continuous evaluation as
described above, and may switch to the pre-terminal guid-
ance phase or a different maneuver sequence. The resulting
switching strategy is summarized in Algorithm 1.

We propose to evaluate sequences of N maneuvers, to
prevent the selection of only locally optimal maneuvers. To
reduce the computational load, the 4N LCA instances can be
executed in a tree-like fashion, where maneuver sequences
with identical starting subsequences share intermediate LCA
results.

D. Interception Guidance
Interception guidance consists of two phases: the pre-

terminal guidance phase, and the terminal guidance phase.



Algorithm 1 Switching Strategy
1: while Phase = ObservabilityManeuvering do
2: Prcap ← LCA(PreTerminalGuidanceLaw)
3: if Prcap ≥ Prdes then
4: Phase← PreTerminalGuidance
5: else
6: for MS ∈ {(m-i), . . . , (m-iv)}N do
7: PrMS

cap ← LCA(MS)
8: end for
9: Start execution of argmaxMS PrMS

cap

10: end if
11: end while

During the pre-terminal guidance phase, the distance be-
tween pursuer and evader is still relatively large. Hence, no
aggressive evasive action is anticipated. In the face of only
small evader maneuvers, simple guidance laws may perform
adequately. In this case, we employ pure pursuit for pre-
terminal guidance [21].

Terminal guidance employs a differential games-based
guidance law that takes into account the pursuer’s maximum
accelerations in terms of the quadrotor attitude and thrust
limits [22]. The control law is numerically obtained using
approximate dynamic programming based on a compressed
representation of the differential game value function. The
terminal guidance law is highly nonlinear due to the presence
of singular surfaces in the value function [23]. This makes
it unsuitable for linear covariance analysis. Simulations have
shown that the probability of capture obtained under pure
pursuit is a conservative estimate compared to the differential
games guidance law. Therefore, we maintain the pre-terminal
guidance law up to termination for the purpose of LCA.

IV. EXPERIMENTAL RESULTS

In this section, we present results from computational and
real-world experiments. We verify the accuracy of linear
covariance analysis in the pursuit-evasion scenario by com-
parison to Monte Carlo analysis, and present an evaluation
of the integrated guidance law using a quadrotor in flight.

A. Computational Experiments

In this section, we compare statistics obtained by LCA to
results from MCA. Both analyses are performed using the
dynamics and measurement equations presented in Section
II with the addition of Gaussian process and measurement
noise. Figure 3 shows the state trajectories from a 1000-
run MCA, and the 3-σ dispersal bounds obtained from
LCA. It can be seen that the 3-σ bounds agree with the
maximum state deviation of the MCA runs. This result is
confirmed when we compare the statistics for the pursuer-
evader distance at termination. In Table I, it can be seen
that as the number of MCA runs increases, the 3-σ bound
on the terminal miss distance converges to approximately
the value obtained using LCA in a single run. The table
also shows that the LCA result is obtained in a fraction
of the computation time that is required to perform MCA.
This reduction in computational burden enables in-the-loop
uncertainty propagation using linear covariance analysis.

Fig. 3: Nominal trajectory, 1000 Monte Carlo trajectories,
and state dispersion 3σ-bounds obtained from LCA.

TABLE I: Comparison of terminal miss distance 3σ-bounds,
and computational time for Monte Carlo Analysis and LCA.

Monte Carlo Runs 10 100 1000 10,000 LCA
3-σ interval [m] 1.916 2.477 2.598 2.657 2.810
Computation time [s] 1.48 13.34 143.40 1331.8 0.6279

B. Flight Experiments

In this section, we demonstrate the guidance law with
observability maneuvers in real-life flight using a quadrotor.
While the quadrotor flies in a motion capture space, it is
pursuing a simulated evader. An overview of the experi-
mental setup is shown in Fig. 4. The evader dynamics are
simulated according to the Dubins vehicle dynamics given in
(1) with Ve = 0.5 m/s and added process noise with Sw =
diag(

[
10−4 10−4 10−4 10−3

]
) m2/s and rad2/s, respectively.

The noisy bearing and attitude angle measurements are
simulated using Rν = diag(

[
10−4 10−4

]
) rad2. The pursuer

estimates the relative state using a UKF, which is initialized
off the first measurements, with large state covariance and
a large initial range estimate. The quadrotor is carrying an
NVIDIA Jetson TX2 system-on-chip. All computation is
performed in real-time using onboard resources. Maneuver
sequences are generated with N = 3, and tracked using the
inner-loop controller described in [24]. Pure pursuit guidance
is used in the pre-terminal and terminal guidance phases.

Figure 5 shows the probability of capture as computed
using LCA. The observability maneuvering phase is started
at 2.6 s with a capture probability of 0.53. Through the
observability maneuvers, this value is increased to the desired
value of 0.95, so that the pre-terminal guidance phase starts
at 4.2 s. The UKF range estimate error is shown as a function
of the true range in Fig. 6. The red curve shows that a large



Fig. 4: Flight space (left), and simulated evader
and measurement (right).
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Fig. 6: UKF range estimate error with
and without observability maneuvers.

error persists if the pre-terminal guidance phase is entered
right away and no observability maneuvers are performed. In
contrast, the blue curve first shows a reduction in the error
through observability maneuvering, and then a reduction
in true range — while maintaining small error — during
the pre-terminal guidance phase. Consequently, the terminal
guidance phase can be entered with a much better state
estimate, which may greatly improve performance against
an aggressively maneuvering evader.

V. CONCLUSIONS

In this paper, we used the extended output Jacobian to
identify a set of maneuvers that improve observability. We
proposed an algorithm that utilizes these maneuvers to move
the pursuer, so that the expected payoff of the differen-
tial game is maximized. We established that linear covari-
ance analysis is a valuable tool for real-time uncertainty
propagation and verified its accurate application through
computational experiments. Finally, we demonstrated that
the observability maneuvers result in an improvement in
range estimation accuracy in real-life flight using a pursuing
quadcopter and a simulated evader.
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