Visual-inertial navigation algorithm development using
photorealistic camera simulation in the loop
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Abstract— The development of fast, agile micro Unmanned
Aerial Vehicles (UAVs) has been limited by (i) on-board comput-
ing hardware restrictions, (ii) the lack of sophisticated vision-
based perception and vision-in-the-loop control algorithms, and
(iii) the absence of development environments where such
systems and algorithms can be rapidly and easily designed,
implemented, and validated. Here, we first present a new
micro UAV platform that integrates high-rate cameras, inertial
sensors, and an NVIDIA Jetson Tegra X1 system-on-chip com-
pute module that boasts 256 GPU cores. The UAV mechanics
and electronics were designed and built in house, and are
described in detail. Second, we present a novel “virtual reality”
development environment, in which photorealistically-rendered
synthetic on-board camera images are generated in real time
while the UAV is in flight. This development environment allows
us to rapidly prototype computing and sensing hardware as
well as perception and control algorithms, using real physics,
real interoceptive sensor data (e.g., from the on-board inertial
measurement unit), and synthetic exteroceptive sensor data
(e.g., from synthetic cameras). Third, we demonstrate repeated
agile maneuvering with closed-loop vision-based perception
and control algorithms, which we have developed using this
environment.

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) systems have been
demonstrated in many domains, ranging from agriculture
to consumer utilization [1]. In most applications, human
operators are still required for the safe and high-performance
operation of the system. Although fully autonomous UAVs
have long been available, their capabilities still do not
match the operational speeds that can be easily achieved by
minimally-trained UAV operators. While various algorithmic
components, such as control, planning, or perception for
agile flight have been demonstrated in isolation using off-
the-shelf components, a system that integrates control and
perception algorithms developed from the ground-up has not
yet been designed, developed, and demonstrated.

An important opportunity that may help close the gap is
the emergence of powerful embedded supercomputers that
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Fig. 1: To enable algorithmic work in a wide range of visual conditions
we have developed a system to replace the UAV’s on-board camera with
images from a virtual environment. While the UAV is in flight (top) the
motion capture pose estimate of the UAV is sent to the Unity game engine
running on a TitanX GPU (middle) which can generate the corresponding
photorealistic image (bottom) for that pose from a virtual world which is
processed and transmitted to the UAV in real time. The system runs fully
in real time as if the sensors were on the UAV, allowing experiments and
decision making in adverse conditions such as obstacle rich environments
or in environments that are difficult to access such as cities.

can process high-rate, high-resolution exteroceptive sensory
data in an effective manner, in order to enable situational
awareness and accurate state estimation for closed-loop agile
control at high speeds. Developing the required algorithms,
however, is a major challenge due to the lack of two critical



components: (i) powerful research platforms equipped with
high-rate electronics and massively-parallel embedded com-
puters and (ii) safe development environments that can help
propel algorithm and software development.

In this paper, we present a powerful UAV system that is ca-
pable of high-speed agile navigation in GPS-denied environ-
ments using control closed on visual-inertial state estimation.
For this purpose, we develop: (i) state-of-the-art mechanical
and electronics hardware that integrate a powerful embedded
supercomputer, the NVIDIA Jetson Tegra X1, with an inertial
measurement unit and a camera, centered around the design
of a custom NVIDIA Jetson carrier board; (ii) a unique
virtual-reality UAV development environment, which we call
FlightGoggles, that allows us to simulate camera images
photorealistically while the UAV is in flight, providing the
integration of simulated visual data with real inertial mea-
surements; (iii) state-of-the-art visual-inertial state estimation
algorithms that give an accurate state estimate for closed-
loop navigation in complex environments, such as through
doors and windows, in a robust and repeatable manner. The
development and integration of these three systems are the
main contributions of the present paper.

To the best of our knowledge, in this paper we present
one of the most capable NVIDIA Jetson carrier boards
designed specifically for the development of high-speed
agile flight by integrating key peripherals that allow high-
resolution, high-rate cameras along with precision inertial
measurement units. Furthermore, we present the idea of a
“virtual-reality” UAV development environment. While using
simulation systems for UAV development has attracted a
vast amount of attention, especially very recently with the
introduction of AirSim by Microsoft [2], our system utilizes
a motion capture environment to photorealistically render
camera images which are then fed back to the UAV for
active decision making and closed-loop flight control. In
this system, the physics are real, the inertial measurements
are real, but all exteroceptive measurements are simulated
photorealistically in real time with the help of powerful
desktop GPUs. We emphasize that this system does not
simulate physics and interoceptive measurements. Hence,
this system is best suited for applications involving com-
plex physics, e.g., when aerodynamic effects are dominant,
and complex electromechanical effects dominate propulsion
forces. Because only a single element of the system is
simulated, this environment allows us to rapidly develop
agile UAVs and move into field deployments in a safe and
scalable manner.

Finally, we develop visual-inertial navigation algorithms
that integrate monocular camera images and inertial mea-
surements to estimate the vehicle’s state in real time on-
board the drone for closed loop control. The visual-inertial
odometry algorithm presented in this paper validates the idea
of utilizing synthetic camera images generated in real time
together with real inertial measurements in closed-loop flight.
The image simulation system is used to develop the visual-
inertial algorithms in a challenging scenario of flying through
a window gap, which is subsequently verified in laboratory

experiments with an on-board camera.

II. RELATED WORK

UAV Systems. Multi-rotor UAVs for research in vision
based algorithms have primarily used off-the-shelf flight
platforms and/or autopilot systems that have been modified
with additional sensors and computation power. The most
popular off-the-shelf platforms have been the AscTec Hum-
mingbird [3], [4], the AscTec Pelican [5], and the Parrot
AR Drone [6]. A few custom platforms have also been
built, typically augmented with an off-the-shelf autopilot
board [7], [8]. Due to being lightweight and low-power the
most popular sensor package for UAVs is a single camera
(either forward or downward facing) and an IMU, although
lightweight 2D laser scanners [4], stereo camera pairs [4],
[9], and an RGB-D sensor [10] have also been used. The
platform we present in this paper is built from the ground-
up to house high-end inertial measurement units, high-rate
high-resolution cameras, and state-of-the-art embedded GPU
computing systems.

Synthetic Environments for Robotics. There has been
a variety of work on the use of synthetic data sets and
simulation in robotics and more generally computer vision.
Synthetically generated data sets, such as those in [11], [12],
have become of particular interest as the need for large
labeled data sets for deep learning has become prevalent.
Of particular note to the work presented here is the method
of Richter et al. in [13] which uses pre-built video games
to generate semantically mapped synthetic data sets. Kavena
et al. use photorealistic renderings to evaluate the perfor-
mance of different feature descriptors under various camera
conditions [14]. Handa et al. provide a synthetic data set
for the verification of SLAM algorithms against a known
3D model and trajectory [15]. In robotics, Gazebo [16] is
the ubiquitous full simulation environment, with specific
applications to UAVs in RotorS [17], which is studied in
depth in [18]. Of primary relevance to this work is Microsoft
Research’s recent release of a developing project, AirSim, an
Unreal Engine based simulation environment for UAVs [2].
AirSim is a plug-in to Unreal Engine providing a rendered
viewpoint of a simulated (or possibly real) UAV location in
the Unreal world. Early releases have an eye toward being
able to generate large data sets for deep learning based off
a simulated UAV model.

Visual Inertial Navigation. The literature on visual in-
ertial navigation is vast, including approaches based on
filtering, e.g., [19], [20], fixed-lag smoothing, e.g., [21], [22],
and full smoothing [23]-[25]. We refer the reader to the
recent survey by Forster et al. [24] for a comprehensive
review. As the computational power that can be carried on a
flying platform has increased, some visual-inertial navigation
algorithms have begun to be run in real time on UAVs. Early
implementations [6], [26], [27] focused on extending the full
SLAM system of Klein and Murray (PTAM) [28] to work on
aerial vehicles. More recent approaches have included using
a cascading estimate of orientation and position with a low
rate stereo camera [9], replacing the PTAM visual SLAM



system with the semi-direct approach SVO [29] augmented
by an IMU [8], using an off-the-shelf pose estimate from an
RGB-D sensor (Google Tango) [7], and a factor graph based
approach similar to our own [30].

III. SYSTEM

A UAV test platform and a development environment
was built for the testing of on-board estimation and control
algorithms while performing agile maneuvers. To integrate
the electronics on the UAV, a custom carrier board for the
NVIDIA TX module was designed, providing the interfaces
necessary for sensing and control, while minimizing size
and weight. A mechanical frame was designed and built
around this carrier board. The UAV is fully controlled by
an on-board NVIDIA TX1 module with a modular software
framework, enabling rapid testing of new algorithms and
sensors. A real-time visual simulation environment runs
using a motion capture system and the Unity game engine,
allowing for rapid prototyping of visual algorithms.

UAV Mechanics. The mechanical layout of the UAV
consists of a series of three stacked plates carrying the power,
control, and sensors (see Fig. 2a). At the bottom is the power
plate carrying the electronic speed controllers (ESCs), power
distribution board, batteries, and the four quadrotor arms
with motors and propellers. The middle board is the TX
module carrier board, and the top plate serves as a utility
plate for mounting the camera(s), external IMU, NAZE flight
controller (safety mechanism only), and the WiFi antennas.
To reduce the vibration on the sensors, the bottom “dirty”
plate is separated from the top two “clean” plates by four
mechanical dampeners. For maximum agility, the motors are
placed as close as possible to the center of the board.

UAV Electronics. The Penguin Carrier Board (Fig. 2b)
carried by Penguin was designed in-house to integrate the
TX1 module with the rest of the vehicle. The board is de-
signed to minimize size and weight while providing seamless
integration of the essential capabilities. Elements such as an
extra microcontroller (Atmel328P MCU) to control the ESCs
and high speed data lanes for IMU and camera data were
integrated to provide autonomous flight. A single USB 3.0
Point Grey Flea3 monochrome camera with a resolution of
1024x1280 and an external Xsens MTi-3 IMU provide the
visual and inertial sensor package for the board. The Point
Grey camera uses a Sunex DSL219 fisheye lens; to avoid the
high distortion at the edges of the lens only the center of the
image was used for VIO algorithms, leading to an effective
resolution of 512x640.

UAV Software Setup. The UAV is controlled through an
on-board software setup that provides complete end-to-end
operation of the UAV from raw sensor data to the signals sent
to each ESC. The system uses Lightweight Communications
and Marshaling (LCM) [31] for communication between on-
board modules, giving a lightweight and flexible framework.
Each on-board module (controller, VIO estimation, motor
control) remains agnostic to its data source, allowing for easy
switching between methods and data sources (e.g. moving
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Penguin TX1
Carrier Board

(a) Exploded view of Penguin quadrotor plat-
form used in VIO experiments

NVIDIA TX1
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Serial Debug
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(b) Penguin Carrier Board

Fig. 2: Mechanical and electronic designs for our agile quadrotor platform
Penguin. The quadrotor platform is CNC routed out of Garolite G10
laminate for a strong and lightweight housing of the drone electronics.
Custom carrier boards were designed in house to provide all of the essential
elements for flight (TX module, IMU, camera(s), motor control) while
minimizing the weight and footprint of the electronics.

from motion capture to VIO state estimation). All processing
occurs on-board the CPU and GPU of the TX1.

Development Environment for Photorealistic Sensor
Simulation in the Loop (PiL). Simulation of images through
a Unity engine is enabled via a ground station computer
featuring an NVIDIA TitanX GPU for rapid rendering of
images based on the motion capture location of the UAV.
The simulation of imagery is performed by creating an
environment in Unity that contains a virtual world we wish
to fly in, and one or more camera objects which are attached
to a TCP socket. Over TCP, the various parameters of the
camera may be set, most importantly the camera pose can
be set in real time based on the motion capture position
of the UAV. For each pose of the camera received, the
Unity camera object returns a timestamped image of the
virtual reality environment as it would be seen from that
pose (see Figure 1). Because of the networking limitations
of sending full images wirelessly to the UAV, for our VIO
state estimation experiments using simulated imagery the
vision front-end is executed on the ground station computer
at speed that the on-board GPU can execute, and only feature
data is sent wirelessly to the UAV for state estimation. The
total delay in receiving visual data on the UAV (rendering
and wireless transmission) is primarily Gaussian around
37 +8 ms with 1.3% outliers above two standard deviations
due to wireless network bottlenecks. For comparison, the
time from image acquisition to processed data with our live
camera is 15 £ 5 ms.

Although our system is intended for UAV flight experi-



Fig. 3: Three photorealistic images generated and streamed to the drone in real time for VIO state estimation during a VIO experiment. Green lines show
0.3 seconds of history for visual features detected and tracked by the vision front end. Our simulation system generates photorealistic images at 60 Hz
based on motion capture pose estimate, which are processed by the VIO system, and used in-the-loop for controlling the drone’s flight.

ments with Photorealistic (exteroceptive) sensor simulation
in the Loop (PiL), it can also be used for replicating the
traditional Hardware in the Loop (HiL) simulations in which
the UAV physics is also simulated in real time along with
the sensors, while the computing hardware is in the loop.

IV. ALGORITHMS
A. State Estimation

State estimation is based on an Extended Kalman Filter
(EKF) powered by Visual-Inertial Odometry (VIO). The VIO
algorithms estimate the motion of a device from visual and
inertial cues. Our VIO approach is based on the work by
Forster et al. [24] with modifications made to allow for
real time state estimation on the limited computation of
a TX1 module. In the following, we discuss the different
components of our VIO pipeline, made up of the low-level
signal processing (vision and IMU front-end), the inference
engine used for accuracy (estimation back-end), and the
high-rate visual-inertial filter used in the control loop (visual-
inertial EKF).

The Vision Front-end. Our vision front-end includes
feature detection, tracking, and geometric verification. The
state estimation system uses a keyframe based scheme where
computationally intensive tasks (feature detection, MAP es-
timation, geometric verification) only occur at keyframes,
while computationally cheap tasks (feature tracking, EKF
estimation) occur at full camera frame rate. A camera frame

IMU Front-End

Vision Front-End

L]

MAP Smoother

Fig. 4: Diagram of the full VIO state estimation system. Gray items are
transmitted at keyframe rate (3-10 Hz) and yellow items are transmitted at
frame rate (60 Hz). Subscripts ¢ and j denote subsequent keyframes, while
subscript k£ denotes the current frame.

is declared to be a keyframe if one of three situations occurs:
after a maximum amount of time has elapsed, after the
smoother has finished processing the previous keyframes, or
if the number of tracked features drops below a threshold.
The feature detector, triggered at each keyframe, extracts
Shi-Tomasi corners [32]. Between keyframes, given the
pixel locations of the features in the (k — 1)-th frame, we
use the Lucas-Kanade feature tracking method for finding
the location of these features in the k-th frame. We use
OpenCV’s GPU implementations for these tasks.

Verification of the tracked features is performed using 2-pt
RANSAC [33] (implemented in OpenGV [34]) to determine
the largest set of tracked features that could be described
by a rigid body transformation given the rotation estimated
from Euler integration of the on-board gyroscope.

The IMU Front-end. The IMU front-end is responsible
for the preintegration of IMU measurements, which amounts
to compressing the set of IMU measurements collected be-
tween two consecutive keyframes into a single preintegrated
measurement and its corresponding covariance matrix.

The on-manifold preintegrated IMU model used in this
system is described briefly below, a more detailed derivation
can be found in [24]. Let us denote the accelerometer and
gyroscope measurements acquired at time k by a; € R3
and wy € R3, and denote the estimated accelerometer and
gyroscope bias at time k by b¢ € R? and b € R3. We wish
to determine the relation between the state, x, of the UAV
at two consecutive keyframes, where the state is made up of
the attitude R, position p, velocity v and IMU biases b%, b9.

Considering two consecutive keyframes at time ¢ and j,
the IMU preintegration performs integration of the IMU
measurements (ag,wy) for all sampling times k = ¢,..., 7,
with time spacing At, to produce a relative rotation ARU, a
psuedo-relative velocity Ad;;, and a psuedo-relative position



Ap;; in the local frame at time ¢, as shown below [24]:
j—1
AR;; = [ [ Exp((wr — b])At)
k=i
j—1
Abij =Y " ARg(ay — by)At (1)
k=i
Jj—1 1
Api; = ; [Amm + 5 AR (ax — B)AL
These same values can be computed directly as functions
of the keyframe states and noise values d¢;;, 6v;;, op;; € R?
in Eqn. 2. The decoupling of measurement integration and
keyframe states significantly saves computation by allowing
for adjusting state estimates during optimization without
reintegrating IMU measurements.

ARU‘ = RZR7 EXp((S(b”)
Af)ij = R;r(’Uj — V; — gAtij) + 5’01']' (2)

_ 1
Api; = R] (pj = pi — vilMti — 59AL;) + 0py;

The Maximum a Posteriori (MAP) Back-end. To enable
on-board processing, the optimization back-end performs
fixed-lag smoothing and computes the MAP estimate of the
most recent keyframe states within a given time window,
using the measurements produced by the front-end. Older
measurements are marginalized out of the factor graph,
producing a faster computation at the expense of accuracy.

The vision measurements (produced by the vision front-
end) represent the pixel observations of a landmark in a
keyframe. The vision measurements are included in the
MAP problem as structureless vision factors which treat the
unknown landmark location [,, as a direct function of the
measurements of the landmark and the state estimate, rather
than as an unknown variable in the MAP estimation [24]. The
IMU measurements (produced by the IMU front-end) are the
preintegrated measurements (A]:Zij7 Av;5, Ap;j;) in (1).

The MAP estimator is a nonlinear least squares optimiza-
tion problem, whose minimum is the MAP estimate:

min > llrwu(@s, @5, AR, Ay, M) >+
(4,9)EF

> D llrcam(@i, wim) [P+l rerior ()|

meLIEF,

3)

where the elements of Eqn. (3) are the negative log-
likelihood of the IMU measurements, vision measurements,
and the priors, respectively. In Eqn (3), F is the set of
consecutive keyframes indices, J,,, is the set of keyframes
in which landmark m has been observed, and L is the
set of landmarks observed during the time horizon. The
functions rivu(+), rcam(+), rpriOR (+) are often called residual
errors in that they quantify the mismatch between a given
state estimate and the available measurements and priors.
The optimization problem in Eqn. (3) is solved using the
incremental smoothing algorithm iSAM?2 [35] implemented
in the GTSAM 4.0 toolbox [36].

Symbol  Property Value

m mass 1.05 kg

I inertia around x axis 4.9 x 1073 kg m2
Iy inertia around y axis 4.9 x 1073 kgm?
I, inertia around z axis 6.9 x 1073 kg m?2
d torque coefficient 2.6 x 1078 kgm?
b thrust coefficient 1.89 x 1076 kgm
d thrust lever wrt x and y  0.158 m

TABLE I: Measured model parameters of the UAV

Visual-Inertial Extended Kalman Filter (EKF) Esti-
mator. Because of the computation limitations on-board the
UAYV, the MAP estimation back-end runs with a keyframe
rate of only 3-10 Hz, which is insufficient for use in closed
loop control. Unlike standard techniques which use IMU data
only to bridge the gaps in MAP estimates, we take advantage
of the frame rate camera data in a visual-inertial EKF. The
EKF follows the standard two step EKF process with a
prediction step provided by IMU integration and an update
step provided by comparing frame rate feature measurements
against the estimated 3D landmark locations generated by
the MAP estimator. The IMU state prediction is given by
standard euler integration of the acceleration and angular
velocity measurements, with the unknown bias terms INJZ and
l;i updated at each keyframe by the MAP estimator.

The camera update step runs at the frame rate of the
camera (rather than the keyframe rate used for the MAP
estimate) using the error between tracked pixel locations u,,
of the m!" landmark and the back projection of the MAP
estimated 3D location im onto the camera.

By using the IMU bias and the 3D landmark locations
from the MAP estimate, the EKF maintains similar accuracy
with the MAP estimate, while still running at a rate suitable
for closed-loop control.

The full estimation system, from processing IMU and
camera data in the IMU/Vision front-ends, to a high rate
state estimate from the EKF is shown in Figure 4.

B. Control

A backstepping controller based on the work of Bouabdal-
lah and Siegwart [37] was implemented to perform trajectory
tracking on the UAV. The controller uses an outer loop
position controller and an inner loop orientation controller.

Position controller. The total thrust, U,, is defined by an
altitude controller according to:

(ex+9—a,(e;+aze,) —aze;) (4)

* cospcosh

where ¢ (roll), 6 (pitch), ) (yaw) are the Euler angles that
rotate XY Z (global frame) to xyz (body frame), e, = nt—n
and e; =1 — 0% — ay, (nd - 7]) are offsets from the desired
value n? of state 7, and oy, are control parameters. The x
and y positions are controlled by adjusting the associated
projections of U, onto the XY axes, that is, uxU, and
uy U,. The desired values of ux and uy are specified by
another set of backstepping controllers:
udX = (m/UZ) (e.t — Qg (ej: + aacem) - O‘dtej:)

d (5)
uy = (m/Us) (ey — ay (ey + ayey) — ayey)



Orientation controller. Since the systems thrust is as-
sumed to be directly along the z axis of the body, udX and
ugi/ prescribe desired pitch and roll for the inner loop:

ot =

—sin~! (ugf cosh — ud sin w) (6)
1 ud cos ) + ud sin
\/1 — (ugl, cosy — ugl( sinz/))2

These values, alongside the desired yaw inputs, are then
controlled by specifying the torques in their associated
directions:

I PR

. I, — L) - -
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0% = sin~
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Upg = — (69 - (Izl_i-[z)dﬂ/) — Qy (69' + agee) - 049‘69') )
Y

I. I, —1,) .-
Uy = T (ew—(liy)qﬁe—aw (ed; —|—a¢,e¢) —awew) (10)

Finally the desired forces and torques are transformed
into appropriate propeller speeds using the thrust and torque

coefficients assuming a quadratic relationship with motor
speed.

V. EXPERIMENTS

Experimental Setup. Experiments were performed in an
approximately rectangular 6 m x 4 m environment. A set of 6
OptiTrack Prime 17W cameras provide a ground truth pose
estimate in the enclosed area, running at 120Hz, which is
used for photorealistic camera image generation. Three sets
of experiments were performed:

1) Visual state estimation and control in a baseline scenario
involving an indoor environment

2) Visual state estimation and control in a challenging
scenario involving flying through a window

3) Camera parameter sweep to investigate estimation ac-
curacy for various camera parameters

The first two experiments were conducted both in simu-
lated environments (using FlightGoggles) and in real en-
vironments, whereas the last experiment was performed in
simulated environments. To keep the UAV within the flight
cage drift is corrected by shifting the global desired trajectory
to match the visual-inertial odometry (VIO) local frame after
each loop.

Visual Navigation in Open Space. In total 42 experi-
ments were performed in open space, 21 using the on-board
camera on the UAV and 21 using our photorealistic image
generation system to simulate a camera in real time. In all
21 experiments using the on-board camera and in 19 out of
21 experiments using the simulated camera the UAV traced
out the desired trajectory with the VIO state estimate in the
control loop for the full life of the battery (2-3 minutes). In
the two simulated experiments that had to be ended early,
Wifi network dropouts caused visual data to not reach the
UAV, and the experiment was ended for safety. The reference
trajectory flown for these experiments is an oval of length

VIO State Estimation Error

Live Camera

Unity Camera

Unity Camera Window
Live Camera Window

0.8

0.6

o
~
T

Estimation Error Per Distance Traveled (%)
o
)

0 50 100 150 200 250 300 350 400 450
Distance Traveled (m)

Fig. 5: Error in VIO state estimate of the UAV’s position as a percentage of
the distance traveled by the UAV. Flights flown with the on-board camera
are shown in blue (no window) and cyan (window) while flights flown using
camera images rendered in Unity are shown in magenta (no window) and
purple (window); a total of 21 flights were flown with each style of camera
without a window, and 8 and 10 flights with the real and simulated cameras
through a window.

2.8 m and width 1.6 m, with a period of 3.5 — 3.8 s, for an
average speed of ~2 m/s and a maximum speed of ~3 m/s
on the long sides of the oval.

The estimation error as a function of distance traveled
for all 42 experiments is shown in Figure 5. Since this
system has no loop closures the initial estimation error during
take-off cannot be recovered, resulting in the higher error
percentages at the beginning of the flight when little distance
has been traveled. Once the UAV starts flying its trajectory
the estimation error remains below 1% (1 c¢m error for every
1 m flown) in all experiments. Note that the tracking of
features is intentionally limited to 3 seconds, both to maintain
low computation costs and to better mimic flying through an
ever changing environment where no features can be seen
continuously. The VIO state estimate was continuously in the
control loop without assistance from motion capture for all
42 flights, demonstrating a stable and accurate state estimate.

Visual Navigation through a Window. Our second
set of experiments involves flying through a window
(0.90m x 0.60m, approximately twice the size of the UAV)
with the VIO state estimate in the loop. Flying through
windows presents a challenging problem for monocular VIO
systems with forward facing cameras, as the visual element
of the VIO system relies on motion to triangulate features.
When flying through a window the only visual data linking
state estimates on one side of the window to the other are
those seen through the window, for which there is little
tangential motion making triangulation inaccurate.

To the best of our knowledge the only two demonstrations
of on-board, vision-based navigation through window open-
ings come from Loianno et al. [38] and Falanga et al. [39]. In
both cases the focus was on trajectory generation and control
under uncertainty, and state estimation was only maintained
for a single traversal of the window before landing. A
key concern is the ability to continue flight after passing
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Fig. 6: Data from camera parameter testing using real-time photorealistic image simulation generated from logged flight data to assess VIO estimation
performance for different camera types. Eight trials were performed for each sensor type. All trials were run in realtime using our simulation pipeline and
an attached Jetson TX1. FOV trials were conducted with XGA (1024x768) resolution at 60 FPS. FPS trials were run at VGA (640x480) resolution and
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(a) Unity generated image with window to fly through in the
upper right corner.
e

(b) Image of UAV flying through a physical window using
VIO in the loop based on its onboard camera and IMU.

Fig. 7: Images from VIO experiments, showing an image from a virtual
on-board camera (top) and of our UAV flying through a window gap under
VIO control (bottom)

through a window; therefore we sought to repeat the baseline
experiment with a window in the path of the oval trajectory,
although at a slower speed (average speeds of ~1.7 m/s and
maximum speed of ~2.3 m/s). At each loop a simulated
window detection occurred to set a new flight trajectory
through the window, however this window detection was not
used for state estimation.

Our photorealistic sensor simulation system provides the
platform to develop our algorithms for window navigation.
Developing algorithms with a physical window hazards
numerous crashes as the system is developed, and the
development of the system without a window or without

visual navigation algorithms in the loop does not provide an
accurate description of the performance of the UAV powered
by visual navigation algorithms. Instead, our development
environment allows for the visual effect of flying through
a window, real dynamics, and real inertial measurements,
without crashing on failure.

A total of 10 flights were performed with a simulated
camera, constituting 361 traversals of the window, with 3
traversals resulting in a “crash” with the virtual window
(crashes detected from the motion capture position of the
UAV). The estimation error across the flights is shown in
cyan in Figure 5.

Through experimentation with simulated imagery we
found that a high keyframe rate with less feature data is
necessary to both consistently bridge the gap created by
flying through the window, and to quickly re-establish an
accurate state estimate on the other side of the window. Based
on these lessons, we performed the same experiment with a
real window and the on-board camera. A total of 8 flights
were performed, constituting 119 traversals of the window
with 6 crashes/pilot take overs due to estimation divergence.
Based on the analyzed data the lower success rate when
using a real camera was due to a combination of noisier
visual data than provided by the simulation system, and the
additional computational load on the on-board computer of
image acquisition slowing down the optimization rate. The
noisier visual data can come from a combination of lower
quality features in the world, motion blur of the live camera,
and imperfections in the estimated camera model.

Camera Parameter Tests. In addition to allowing for
testing in a variety of visual environments, our development
environment also allows for rapidly evaluating sensor prop-
erties and configurations. For instance, we took a 70 second
pre-recorded flight of our UAV flying an oval trajectory
under motion capture and tested the VIO’s performance
in real-time using real-world IMU measurements against a
set of camera parameters spanning Field of View, Camera
Resolution, and Frame Rate. See Figure 6 for a selection of
results. These measurements are not meant as a declaration
of the best camera to use for visual inertial navigation, but
rather to show the capabilities of the system for rapid system
prototyping to fit new challenges.

The ease of experimenting with this simulation system
makes testing out sensor configurations in new flight scenar-
ios easy and cost effective. While we have focused on a few



parameters of the camera sensor itself, a wide range of other
effects such as camera blur, scene lighting, feature richness,
and accuracy of the camera model can easily be investigated.

VI. CONCLUSION

The work presented here demonstrates the capabilities
of our fully integrated drone platform, its on-board visual
inertial odometry system, and our novel real time visual
simulation environment. Using the VIO system we can fuse
inertial data and visual data (either real or simulated) in real
time to perform closed loop control through agile maneuvers.
We demonstrate this capability in an open room, and use the
visual simulation system to safely develop our capabilities in
the challenging scenario of flying through a window opening.
The combined drone and visual simulation system provides
a platform for rapid development of vision based algorithms
in increasingly complex scenarios.
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