
Continuous Tensor Train-Based Dynamic Programming for
High-Dimensional Zero-Sum Differential Games

Ezra Tal, Alex Gorodetsky, and Sertac Karaman

Abstract— Zero-sum differential games constitute a promi-
nent research topic in several fields ranging from economics
to motion planning. Unfortunately, analytical techniques for
differential games can address only simple, illustrative problem
instances, and most existing computational methods suffer from
the curse of dimensionality, i.e., the computational requirements
grow exponentially with the dimensionality of the state space.
In order to alleviate the curse of dimensionality for a certain
class of two-player pursuit-evasion games, we propose a novel
dynamic-programming-based algorithm that uses a continuous
tensor-train approximation to represent the value function. In
this way, the algorithm can represent high-dimensional tensors
using computational resources that grow only polynomially
with dimensionality of the state space and with the rank
of the value function. The proposed algorithm is shown to
converge to optimal solutions. It is demonstrated in several
problem instances; in case of a seven-dimensional game, the
value function representation was obtained with seven orders
of magnitude savings in computational and memory cost, when
compared to standard value iteration.

I. INTRODUCTION

The field of differential games has been the subject of
extensive research since the seminal work by Isaacs in the
1950s [1]. Differential game theory is relevant to diverse
fields, ranging from robust control to economics [2].

We consider two-player differential games with zero-
sum utilities. This class of games is studied in the context
of optimal control, for example concerning pursuit-evasion
scenarios in collision avoidance [1], [2]. If linear dynamics
and quadratic cost are considered, solutions can be obtained
using the Game Ricatti differential equation. However, these
results do not hold for a more general class of games,
including those that involve nonlinear dynamics [2].

Numerical schemes that obtain the game’s value func-
tion by finding a solution to the Hamilton-Jacobi-Isaacs
partial differential equation are commonly utilized in order
to address games for which analytical solutions cannot be
obtained. The dynamic programming (DP) approach specif-
ically does so by applying a backwards analysis based
on Bellman’s principle of optimality. Methods based on
DP are successfully applied to differential games in the
literature, e.g., [3], [4]. Yet, DP methods based on naive grid
discretization are intractable for games represented by high-
dimensional vector differential equations. Strictly speaking,
memory and computation requirements grow exponentially
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with increasing dimensionality of the state space. This phe-
nomenon is called the curse of dimensionality. As a result,
existing numerical methods based on grid discretization can
handle only up to a few dimensions (e.g., no more than
three), and do not scale to realistic problem instances.

Existing literature addresses the curse of dimensionality
in various ways, e.g., using system decompositions [5] or by
forgoing spatial discretization [6]. In this paper, we propose a
new representation for the value function in order to alleviate
the curse dimensionality in low-rank problems. The tensor-
train (TT) decomposition enables representation of a high-
dimensional problem in a manner that does not inherently
suffer from the curse of dimensionality [7]. Specifically, we
utilize a continuous analogue of the TT called the functional
tensor-train (FT). While the TT represents an n-dimensional
tensor, the FT represents an n-variate function. A software
package for FT-based calculation is freely available [8], and
was used for implementations in this work.

The application of FT-based approximation to represent
the cost function has produced promising outcomes in
one-sided optimal control [9]. The algorithm avoids the
curse of dimensionality and remains feasible even for high-
dimensional problems. This is especially relevant to the
present work, as differential games often need to account
for state variables corresponding to both players.

In this paper we present a dynamic programming al-
gorithm for high-dimensional pursuit-evasion games. The
algorithm employs FT-based representations and computa-
tional methods to approximate Bellman’s DP operator. By
virtue of the approximation, the computational cost and
memory requirement grow polynomially with increasing di-
mension. Therefore the algorithm remains tractable for high-
dimensional problems that admit a low-rank value function.

We prove that the proposed algorithm converges to the
exact value function, for a certain class of problems. Along
the way, we provide a complexity analysis and worst-case
convergence bounds based on the contraction property of
value iteration. Finally, we present computational results for
several challenging problem instances, including a seven-
dimensional aerial pursuit scenario.

II. PROBLEM DEFINITION

In this section, the problem formulation is presented, and
conditions for existence and continuity of the value function
are provided. These results are used to show the consistency
of discrete game approximations in the next section.

We consider a general vector-valued differential equation

ẋ(t) = f(t, x(t), u(t), v(t)), x(0) = x0,



where x ∈ X is the state, u ∈ U is the control by player i
(the minimizer), and v ∈ V is the control by player ii (the
maximizer).

Assumption 1 (i) The function f : [0, tf ]×X×U ×V →
Rn is bounded and continuous in x,

(ii) the state space X is a compact Riemannian manifold,
(iii) the control inputs u(·) : [0, tf ]→ U , v(·) : [0, tf ]→ V

are measurable for t ∈ [0, tf ],
(iv) the control sets U ⊂ Rnu , V ⊂ Rnv are compact.

We consider three distinct cost structures:
(IH) Infinite-horizon games with discount rate β > 0 and

cost function:

Jµu,µv (x0) =

∫ ∞
0

e−βtg(x(t), µu(x(t)), µv(x(t)))dt,

where µu : X → U is a feedback strategy for player i
and µv : X → V for player ii.

(PT) Games with predetermined finite termination time tf
and cost function:

Jµu,µv
(x0) =

∫ tf

0

g(t, x(t), µu(x(t)), µv(x(t)))dt

+ q(x(tf )).

(TC) Games with a terminal constraint set Xf ⊂ X , such
that tf = inf{t ∈ R+|x(t) ∈ Xf} and cost function:

Jµu,µv
(x0) =

∫ tf

0

g(x(t), µu(x(t)), µv(x(t)))dt

+ q(x(tf )).

For (TC), the termination time from x(0) = x0 under
the policy pair (µu, µv) is denoted by tf (x, µu, µv).

We assume that in all games both players have knowledge of
the full state, the opponent control action, and the dynamics
and cost structure of the game. For the sake of brevity,
we will omit time indices from this point onward. Note
that in case of (IH) and (TC), the running cost function
is independent of time. In case of (PT), a general time
independent expression can be recovered by setting the
augmented state x← (t, x), which is possible as tf is finite.
This allows us to unify the cost structures of (PT) and (TC)
by defining a terminal set as Xf = {(t, x)|t ≥ tf} for (PT).

In this work, we focus on memoryless pure strategies.
Strategies with memory need not be considered, given that
a saddle point in feedback strategies exists [2]. Mixed
strategies could be considered; however, they are technically
distributions over the multi-dimensional continuous control
spaces, which makes their synthesis fairly challenging.

The solution of a game is the value function, which can
then be used as an implicit representation of the optimal
strategies. Specifically, the value function V : X → R gives
the cost of the game from an initial condition x ∈ X . Its
upper value is given by

V̄ (x) = min
µu∈Mu

max
µv∈Mv

Jµu,µv (x), (1)

where Mu and Mv are the sets of admissible strategies for
players i and ii. These sets consist of all functions µu : X →
U and µv : X → V , respectively. The reciprocal lower value
is obtained by swapping the min and max operators.

Assumption 2 The differential equation f and the running
cost g are separable into terms containing u and v, i.e.,

f(x, u, v) = fu(x, u) + fv(x, v),

g(x, u, v) = gu(x, u) + gv(x, v).

Furthermore, fu, fv , gu, and gv are continuous and bounded.

Lemma 3 [10] Under Assumptions 1 and 2, the differential
game admits a saddle point equilibrium, such that there
exists a value function V and V = V̄ = V− .

Necessary conditions for existence of a value function are
hard to formulate [11]. A sufficient condition is given by
Assumption 2 and used in Lemma 3. Assumption 4 below
can be interpreted as a controllability condition in proximity
of Xf , so that the termination set can be entered through any
point on its boundary. This results in Lipschitz continuity of
the value function along the boundary of the termination set
[12]. Finally, Lemma 5 below gives the global continuity
result for the value function.

Assumption 4 For (PT) and (TC), the terminal cost function
q is bounded and Lipschitz continuous. Additionally, in case
of (TC), Xf is closed and its boundary ∂Xf is Lipschitz.
Furthermore, ∀x ∈ ∂Xf , tf (x, µ∗u, µ

∗
v) – with µ∗u, µ

∗
v the

saddle point policies – is continuous.

Lemma 5 [13] Under Assumptions 1, 2, and 4, the value
function V (x) is Lipschitz continuous in x.

III. PRELIMINARIES

This section is devoted to the description of two essen-
tial building blocks of our algorithm: Markov Game (MG)
approximations and low-rank tensor approximations. The
MG approximation enables the application of the discrete
DP paradigm. It is a game-theory analogue of the well-
known Markov Decision Process (MDP) from control theory.
The low-rank tensor approximation is used to represent the
value function of the MG in compressed form. Its purpose
is to mitigate the curse of dimensionality that naive DP
algorithms suffer from, and thereby enable the application
of our algorithm to high-dimensional differential games.

A. Markov Game approximation

The MG approximation consists of discretization in both
time and space. The state trajectory and control inputs are
approximated by piece-wise constant functions. The MG is
defined by the tuple Gh = 〈Zh, Zhf ,U ,V, ph, rh, qh, γh〉,
where Zh ⊂ X is a finite set of states, Zhf ⊂ Zh is the
terminal constraint set for (PT) and (TC), ph(z, u, v, z′) is
the transition probability from state z to z′ under control
actions u and v, rh(z, u, v) is the stage cost for state z under



control actions u and v, qh – with qh(z) = q(z), ∀z ∈ Zh
– is the terminal cost function for (PT) and (TC), and γh is
the discount factor for future cost for (IH). The parameter h
is an approximation parameter that represents a measure of
the fineness of the discretization. The discrete domain Zh is
typically chosen such that its convex hull is equal to X .

A pure feedback strategy is given by a map µhu : Zh → U
for player i and µhv : Zh → V for player ii. For (PT) and
(TC), the expected cost associated with a strategy pair and
corresponding trajectory of finite length is given by

Jhµh
u,µ

h
v
(z0) = E

[
N−1∑
i=0

rh
(
zi, µ

h
u(zi), µ

h
v (zi)

)
+ q(zN )

]
with zi the state at time step i, so that zN ∈ Zhf is the
termination state. The expected cost for (IH) is

Jhµh
u,µ

h
v
(z0) = E

[ ∞∑
i=0

γh
i
rh
(
zi, µ

h
u(zi), µ

h
v (zi)

)]
.

For convenience we assume a regular grid, but the methods
can trivially be extended to any rectilinear grid. We denote
the nodal interval along dimension i by h[i] and define
h = maxi h[i]. The transition probabilities are obtained using
barycentric interpolation over the standard simplex in the
orthant corresponding to the direction of f(z, u, v), leading
to an upwind differencing scheme. Let e[i] be the vector
with i-th element equal to h[i] and all other elements equal
to zero. The transition probabilities are then given by

ph(z, u, v, z + e[i]) = ∆th

h[i] f
+(z, u, v)[i]

ph(z, u, v, z − e[i]) = ∆th

h[i] f
−(z, u, v)[i]

for i = 1, 2, . . . , n and ph(z, u, v, z)

= 1−
n∑
i=1

(
ph(z, u, v, z + e[i]) + ph(z, u, v, z − e[i])

)
with

f+(z, u, v)[i] =

{
f(z, u, v)[i] if f(z, u, v)[i] > 0

0 otherwise
,

f−(z, u, v)[i] =

{
−f(z, u, v)[i] if f(z, u, v)[i] < 0

0 otherwise
.

In this work, transition probabilities along the boundaries
of Zh are specified by a reflective boundary condition.
Consider a state z at an extreme point of Zh, such that
z′ = z+ e[i] /∈ Zh or z′ = z− e[i] /∈ Zh, then the transition
probability to z′ is disregarded and its value is added to the
self-transition probability, as follows:

ph(z, u, v, z)← ph(z, u, v, z) + ph(z, u, v, z′).

The temporal discretization interval ∆th may be set
specifically for the problem, and must satisfy

0 < ∆th ≤ Qh(z, u, v)−1 (2)

with Qh(z, u, v) =
∑n
i=1

|f(z,u,v)[i]|
h[i] , in order to comply

with the Courant–Friedrichs–Lewy (CFL) condition [14].

The stage cost of the MG is

rh (z, u, v) =
1− γh

β
g(z, u, v)

with γh = e−∆thβ for (IH) and

rh (z, u, v) = ∆thg(z, u, v)

for (PT) and (TC), in which case γh = 1.
This scheme satisfies local consistency conditions pro-

vided below. The first two conditions can straightforwardly
be verified by symbolic evaluation, the third condition holds
by (2) and suitable selection of ∆th in case of f(z, u, v) = 0,
and the fourth condition holds trivially by setting K1 =

√
n

with n the number of state dimensions.

Definition 6 [10] The sequence of MGs Gh satisfies local
consistency conditions if ∆th(z, u, v) > 0 such that

(i) E[zhi+1−zhi ] = f(z, u, v)∆th(z, u, v)+o(∆th(z, u, v)),
(ii) Cov[zhi+1 − zhi ] = o(∆th(z, u, v)),

(iii) lim
h→0

sup
z,u,v

∆th(z, u, v)→ 0,

(iv) ‖zhi+1 − zhi ‖2 ≤ K1h

for some real K1. In (ii), o(·) refers to little-o notation, i.e.,
we write f(h) = o(g(h)) to mean that lim

h→0

f(h)
g(h) = 0.

The upper value function of Gh,

V h+(z) = min
µh
u∈Mh

u

max
µh
v∈Mh

v

Jhµh
u,µ

h
v
(z),

is the analogue of (1). Similar to the continuous differential
game, the sets Mh

u and Mh
v contain all µhu : Zh → U and

µhv : Zh → V , respectively. The lower value function V h−

is given by swapping the min and max operators. Theorem
8 gives the MG consistency result, which is based on local
consistency and continuity of the value function by Lemma
5. Note that V h+ (as well as V h−) is a tensor that can be
seen as a function Zh → R, while V is a function X → R.

Remark 7 To enable the comparison in Theorem 8 and
onward, we implicitly consider a tensor consisting of evalu-
ations of V on the set Zh ⊂ X .

Theorem 8 [10] Under Assumptions 1, 2, 4 and satisfac-
tion of local consistency conditions, V h+(x) → V̄ and
V h−(x) → V− as h → 0. Consequently, V h+(x) → V and

V h−(x) → V as h → 0, i.e., the upper and lower value
functions of the MG converge to the value function of the
continuous differential game.

B. Low-rank tensor approximation

The value function of a MG on a regular grid with l
nodes along each of its n dimensions imposes O(ln) storage
cost. Moreover, a naive approach to DP has computational
complexity of the same order. Hence, it will become in-
tractable as the dimension n increases. To mitigate this curse
of dimensionality, we propose to exploit low-rank separable
structure, i.e., that certain functions in the problem can be



written in terms of a small number of products of univariate
functions. We exploit such separability by leveraging recent
advances in the area of tensor decompositions [15].

In this work, we utilize the tensor-train representation
of low-rank tensors [7] as an ansatz for representing low-
multilinear-rank functions [16], [17]. Suppose X ⊂ Rn is
a tensor-product domain, functional tensor-train (FT) repre-
sentation of a multivariate function f : X → R is

f(x1, . . . , xn) =

r0∑
i0=1

· · ·
rn∑
in=1

f
(1)
i0,i1

(x1) . . . f
(n)
in−1,in

(xn),

(3)
with ri called the FT ranks. The univariate functions f (i)

k,l

are scalar-valued functions of the ith variable and can take
various forms [17] including expansions of polynomials,
piecewise polynomials, piecewise linear elements, piecewise
constant elements, etc. In the current work, piecewise linear
functions are used according to the description provided
in [9]. For clarity, Equation (3) can be written as the product
of matrices with sizes ri × ri+1 with i = 0, 1, . . . , (n− 1):

f(x1, . . . , xn) = F1(x1) . . . Fn(xn)

with

Fi(xi) =


f

(i)
1,1(xi) . . . f

(i)
1,ri

(xi)
...

. . .
...

f
(i)
ri−1,1

(xi) . . . f
(i)
ri−1,ri(xi)

 . (4)

Since f is a scalar-valued function, the FT imposes that
r0 = rn = 1. As the ranks increase (and thereby the size
of the cores), the ability to represent interactions between
variables increases. The TT ranks are bounded by the sin-
gular value decomposition (SVD) ranks of the unfoldings of
f [7], [18], [17], i.e., rk ≤ SVD-RANKf(x≤k;x>k) where
x≤k = (x1, . . . , xk) and x>k = (xk+1, . . . , xn). Note that
in the functional case described here, the functional SVD
represents f as a Hilbert-Schmidt kernel, and we refer the
reader to further details about how the ranks of this kernel
are related to the FT ranks in [18].

In this work we utilize the rank-adaptive cross-
approximation scheme described in [17] as implemented
in [9] to obtain a functional representation of the cost
function. Similar to the discrete case, it only requires function
evaluation at nodal locations. Hence, in this work the discrete
value function V h defined on the discrete domain Zh is
approximated by a piecewise linear continuous function Ṽ h

defined on the convex hull of Zh. Akin Remark 7, we
implicitly consider a tensor consisting of evaluations of Ṽ h

at Zh when comparing Ṽ h and V h.
The algorithm aims to render an δ-accurate approximation

as defined in Assumption 9. It requires O(nlr2) function
evaluations and O(nlr3) operations, where we have assumed
that ri < r for i = 0, . . . , n. The required memory for
storage of the FT approximation is O(nlr2). Evaluation of
the FT at a single location in the state space requires O(nlr2)
operations. Note that a high FT rank may be required to
obtain an accurate representation of some functions, and the

larger the FT rank the smaller the compression ratio we
obtain. Thus our proposed representation format gains its
full advantage when the cost functions have the low-rank
separable structure exploited by the FT.

Assumption 9 The rank-adaptive cross-approximation op-
erator Πδ with accuracy parameter δ ∈ (0, 1) provides an
approximation Ṽ h = ΠδV

h, such that

‖Ṽ h − V h‖F ≤ δ‖V h‖F

with ‖·‖F a multidimensional generalization of the Frobenius
norm. Note that this is a tensor-norm, since we consider
evaluations of Ṽ h on Zh.

IV. FT-BASED MINMAX DYNAMIC PROGRAMMING

In this section we propose the FT-based DP algorithm.
The aim of the algorithm is to obtain the game’s value
function and thereby an implicit representation of the op-
timal strategy for each player. The first step is to obtain a
consistent discretization of the differential game according to
the method given in Section III-A. Next, the value function
of the resulting MG is iteratively computed. Each iterate is
computed and stored in compressed form to reduce computa-
tion time and storage requirements. Furthermore, a multigrid
scheme is used to obtain convergence on a fine grid through
successive refinement. First, we describe the approximation
of the minmax value iteration in Section IV-A. Next, we
describe a best-response algorithm that computes a solution
to the MG in Section IV-B. Finally, we discuss multigrid in
Section IV-C.

A. Approximate minmax value iteration

Value iteration performs an iterative calculation of the
value function based on the Bellman equation

V h+(z) (5)
= min

u∈U
max
v∈V

rh (z, u, v) + γh
∑
z′ p

h(z, u, v, z′)V h+(z′).

From this point, we omit some of the superscript modifiers
to improve readability. Properties of the upper value function
that hold under minmax DP, typically also hold for the lower
value function under minmax DP.

We now define two minmax DP operators. The exact
minmax operator Th performs value iteration on the value
function V h in its full uncompressed form by solving the
minmax optimization problem for all nodes z ∈ Zh at
each iteration. Its approximate counterpart T̃hδ is a composite
operator that performs value iteration and compression.

Definition 10 Let B(Zh) be the set of real-valued value
functions over Zh, i.e., V h ∈ B(Zh). The minmax Bellman
operator Th is a mapping from B(Zh) to itself, defined as

(ThV h)(z) = min
µh
u∈Mh

u

max
µh
v∈Mh

v

(Thµu,µv
V h)(z)



with (Thµh
u,µ

h
v
V h)(z)

=


qh(z) if z ∈ Zhf
rh
(
z, µhu(z), µhv (z)

)
+γh

∑
z′ p

h(z, µhu(z), µhv (z), z′)V h(z′) otherwise.

Definition 11 The approximate maxmin DP operator T̃hδ is
the combined δ-accurate rank-adaptive cross-approximation
Πδ and Bellman operator Th, and it is defined as

T̃hδ Ṽ
h = Πδ

(
ThṼ h

)
.

The approximate operator has two main advantages:
Firstly, it is applied directly to the previous value function
iterate in FT-format. Hence, the value function never needs to
be stored in its explicit full form, which results in a reduction
of the required storage. Secondly, the cross-approximation
algorithm requires only O(nlr2) function evaluations. Con-
sequently, the minmax optimization problem only needs to be
solved for a subset of the nodes in Zh, leading to a reduction
in computational cost. This subset is selected by the cross-
approximation algorithm at each iteration.

B. Best response iteration

At each value iteration the minmax optimization problem
(5) must be solved for a subset of the nodes in Zh. We apply
a method called best response (BR) iteration by which up-
dated control actions are iteratively calculated. The method is
equivalent to best response dynamics with unit discretization
step [19]. By Definition 12, any fixed point of BR iteration
is a pure strategy equilibrium. Damped Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization is applied to solve
the one-sided optimization problems in (6), see e.g., [20],
for details.

Definition 12 The best response (also called optimal or
rational response) mappings are as follows:

BRu(z, v) := argmin
u∈U

J̄(z, u, v),

BRv(z, u) := argmax
v∈V

J̄(z, u, v)
(6)

with J̄(z, u, v) = rh (z, u, v)+γh
∑
z′ p

h(z, u, v, z′)Ṽ h(z′).
Note that these mappings may be set-valued.

C. Multigrid implementation

The value iteration algorithm is run iteratively in a grid
refinement scheme. The multigrid algorithm progresses over
a sequence of discretizations hi, i = 0, 1, . . . , N , with hi >
hi+1. Accompanying sequences of accuracy parameters δhi

and convergence criteria δhi

V must be provided. For hi, i =
1, 2, . . . , N , the initial value function is obtained based on
the final iterate at the previous discretization level by means
of interpolation operator Iii−1, such that Ṽ hi

0 = Iii−1Ṽ
hi−1

with Ṽ hi−1 the final iterate at hi−1. The definition of the
interpolation operator follows naturally from the piecewise
linear uni-variate basis functions of the FT that are used in
this work. The operator works directly on the matrix-valued

functions that comprise each core, as given in (4), and thus
has computation cost linear in the number of dimensions.
An overview of the algorithm is given below, where ‖ · ‖2
indicates the function L2-norm.

Algorithm 1 FT-Based Minmax Value Iteration
Input: Initial value function in FT format Ṽ h0

0 ,
FT-cross accuracy parameters δhi , i = 0, 1, . . . , N ,
Convergence criteria δhi

V , i = 0, 1, . . . , N ,
1: for i = 0, 1, . . . N do
2: k = 0
3: while ‖Ṽ hik − Ṽ

hi
k−1‖2 > δhi

V do
4: Ṽ hi

k+1 = T̃hi

δhi
Ṽ hik

5: k ← k + 1
6: end while
7: if i < N then
8: Ṽ

hi+1
0 = Ii+1

i Ṽ hik
9: end if

10: end for
11: return Ṽ hN

k

V. ANALYSIS

In this section, we prove two major results: sup-norm
error bounds for approximation of the value function, and
the computational complexity of the algorithm per iteration.

A. Convergence

Before convergence of the approximate algorithm is ad-
dressed, we treat the sup-norm convergence of the exact
Bellman operator Th for the various differential game for-
mulations.

Definition 13 Let B(Zh) indicate the set of all real-valued
functions on Zh, and let ‖ · ‖∞ indicate the supremum-
norm, then a mapping Th : B(Zh)→ B(Zh) is a sup-norm
contraction with modulus α ∈ (0, 1) if

‖ThV h−ThV h′‖∞ ≤ α‖V h−V h′‖∞, ∀V h, V h′ ∈ B(Zh).

For (TC), a policy pair µu, µv for which termination of the
game occurs in finite time is considered proper, as opposed
to improper policy pairs for which no termination occurs
in finite time. We define the notion of unilateral termination
capability as the capability by a player to terminate the game
within finite time under any admissible adversarial policy.

Assumption 14 For (TC), we assume that either
(i) all admissible policy pairs are proper, or

(ii) at least one player has unilateral termination capability
and incurs infinite cost under any improper policy.

Theorem 15 Minmax value iteration by mapping Th is a
sup-norm contraction for (IH) and (ST), and for (TC) under
Assumption 14 (i).

Proof: The discount factor γh ∈ (0, 1) is applied in
(IH) under any adversarial policy. Therefore the standard
discounted DP contraction proof holds and Th is a sup-norm
contraction mapping with modulus γh (see for example [21]).



In case of (ST) and (TC) under Assumption 14 (i), any
policy is proper under any adversarial policy and thus the
standard proof for undiscounted shortest path problems holds
[21].

Lemma 16 [21] If the mapping Th is a sup-norm contrac-
tion with modulus α ∈ (0, 1) that maps B(Zh) into itself,
the following holds:

(i) V h∗ is a unique fixed point of Th such that V h∗ =
ThV h∗,

(ii) Th
k

V h → V h∗ as k →∞ for any initial V h ∈ B(Zh),
(iii) ‖ThV h − V h∗‖∞ ≤ α‖V h − V h∗‖∞ for any V h ∈

B(Zh).

Lemma 16 presents a convergence rate for exact Markov
game value iteration in case of (IH), (ST), and (TC) under
Assumption 14 (i). In case only Assumption 14 (ii) holds for
(TC), convergence of exact VI is still guaranteed, but the DP
operation is not a contraction mapping [22].

The following lemma will prove useful in the analysis of
the contractive properties of the FT-based Bellman operator
T̃h. Our major result regarding the convergence of the FT-
based value iteration algorithm is given by Theorem 18.

Lemma 17 Under Assumption 9, for Πδ using accuracy
parameter δ ∈ (0, l−2nε) with ε ∈ (0, 1] the following holds:

‖ΠδV
h − V h‖∞ ≤ ε‖V h‖∞.

Proof: For a tensor V h of ln elements ‖V h‖∞ ≤
‖V h‖F ≤

√
nl‖V h‖∞ by Cauchy-Schwartz. Using Assump-

tion 9, we can now write:‖ΠδV
h−V h‖∞ ≤ ‖ΠδV

h−V h‖F
≤ δ‖V h‖F ≤ δ

√
ln‖V h‖∞.

Theorem 18 Under Assumptions 1, 2, 4, 14(i) and 9, ap-
proximate value iteration T̃hδ on the MG value function Ṽ h is
able to converge to within arbitrary bounds of the exact value
function V ∗ of the continuous differential game as h → 0.
The sup-norm error of its iterates is bounded by

‖Ṽ hk − V h∗‖∞ ≤ ε
1− (α+ αε)k

1− (α+ αε)
‖V h∗‖∞

+ (α+ αε)k‖Ṽ h0 − V h∗‖∞

with V h∗ the exact value function of the MG, ε the FT-cross
accuracy parameter in the sup-norm, and α the sup-norm
contraction modulus of the exact Bellman mapping Th.

Proof: By Lemma 3, V ∗ exists and is unique. The
mapping Th is a sup-norm contraction with modulus α < 1
by Theorem 15. We now use that by Lemma 16 under the
exact mapping Th V hk → V h∗ as k → ∞, which in turn
converges to V ∗ as h→ 0 by Theorem 8. We also need that
by Lemma 17 the parameter ε can be set arbitrarily small.

First we formulate a recursive bound:

‖Ṽ hk − V h∗‖∞
≤ ‖Ṽ hk − ThṼ hk−1‖∞ + ‖ThṼ hk−1 − V h∗‖∞
≤ ε‖ThṼ hk−1‖∞ + ‖ThṼ hk−1 − V h∗‖∞
≤ ε

(
‖ThṼ hk−1 − V h∗‖∞ + ‖V h∗‖∞

)
+ ‖ThṼ hk−1 − V h∗‖∞

= (1 + ε)‖ThṼ hk−1 − V h∗‖∞ + ε‖V h∗‖∞
≤ (1 + ε)α‖Ṽ hk−1 − V h∗‖∞ + ε‖V h∗‖∞,

(7)

where the first and third inequalities follow from the trian-
gle inequality, the second inequality follows from Lemma
17, and the fourth inequality follows from the contraction
property of the exact Bellman operator Th, i.e., Theorem
15. Similarly, for k = 1 we obtain

‖Ṽ h1 − V h∗‖ ≤ (1 + ε)α‖Ṽ h0 − V h∗‖+ ε‖V h∗‖. (8)

Combining equations (7) and (8), we obtain the following
direct formulation:

‖Ṽ hk − V h∗‖

≤ ε‖V h∗‖
k∑
i=0

(α(1 + ε))
i
+ (α(1 + ε))

k ‖Ṽ h0 − V h∗‖

= ε
1− (α+ αε)k

1− (α+ αε)
‖V h∗‖∞ + (α+ αε)k‖Ṽ h0 − V h∗‖∞.

Note that for ε = 0 the conventional αk bound for exact value
iteration is recovered. In order to guarantee the algorithm
does not diverge the condition α + αε < 1 must hold.
In this case the contractive property is able to bound the
accumulated error introduced by the FT approximation.

B. Complexity

The computational complexity of a single value iteration
(line 4 in Algorithm 1) is given by Theorem 19.

Theorem 19 Consider a n-dimensional FT value function
Ṽ hi , where h represents a regular MG discretization with
l nodes per dimension. Suppose evaluation of the objective
function of (5) requires p operations if Ṽ hi (z′) are provided,
and must be performed m times in order to obtain the saddle
point. Then, Ṽ hi+1 = T̃hδ Ṽ

h
i = ΠδT

hṼ hi is obtained in

O(nlr2(mp+ n2lr2) + nlr3)

operations.

Proof: The FT-rankadapt-cross algorithm repre-
sented by operator Πδ requires O(nlr2) function evaluations,
which each require m times p operations after calculation of
V (z′). Using the proposed interpolation scheme V (z′) must
be calculated for 2n points at a cost of O(nlr2) for each
of these FT evaluations. Finally, FT-rankadapt-cross
itself requires O(nlr3) operations.
Note that by Theorem 19 the complexity scales polynomially
with the game dimension n, which lifts the curse of dimen-
sionality as long as the rank does not increase exponentially



with the dimension, i.e., the value function admits an ac-
curate low-rank approximation. Apart from specific cases,
e.g., linear-quadratic differential games, estimation of the
value function rank is very challenging and subject of current
research. Here, this is addressed by the rank-adaptive nature
of the cross-approximation used. However, computational
cost may become prohibitive as rank increases. Setting a
rank bound, r ≤ rmax, results in a quasi-optimal truncated
value function Ṽ hi+1 = argminṼ h ‖Ṽ h−ΠδT

hṼ hi ‖F subject
to rank(Ṽ h) ≤ rmax. By Theorem 19, the rank bound also
bounds the number of computations per iteration.

VI. COMPUTATIONAL RESULTS

In this section, we present computational results for
two nonlinear differential game scenarios: the well-known
Homicidal Chauffeur game, and an aerial pursuit scenario
involving a quadrotor and a 3D Dubins car. We make use
of the FT computational algebra in the C3 toolbox and the
framework for DP provided by the C3SC toolbox [8], [23].
All computations were performed on a PC with Intel i9-
7900X CPU @ 3.30GHz. The algorithm was run in parallel
by distributing the computation over 20 threads.

A. Homicidal Chauffeur

The Homicidal Chauffeur game was introduced by Isaacs
in 1965. In this game of cost structure (TC), a homicidal
chauffeur tries to run over a pedestrian as quickly as possible.
While the chauffeur moves at higher speed, he is limited
in his motion by the turning radius of his vehicle. The
pedestrian on the other hand can turn instantly. The scenario
can be expressed in normalized relative coordinates fixed to
the chauffeur, leading to the following differential equations:

ẋ1 = −x2u+ v1 sin(v2), ẋ2 = x1u+ v1 cos(v2)− 1

with x the relative position of the pedestrian, v1 ∈ [0, 1
4 ]

the pedestrian speed, v2 ∈ [−π, π] the pedestrian direction,
and u ∈ [−1, 1] the pursuer steering input. The termination
set is Xf = {x|

√
x2

1 + x2
2 < 0.4}, and the corresponding

termination cost is set to zero. The running cost is set to
unity, so that the pay-off is equal to the termination time.

FT-based DP is applied to a discretization with 41 nodes
from -8 to 8 along each dimension. The value function found
has rank 8 and is shown in Fig. 1. Comparison to solutions
from literature, e.g., [1], [24], shows very good agreement.
Although the value function is only two dimensional, the
compressed representation reduces the required storage from
13.4 kB for the full tensor to 5.2 kB for the FT. On average,
the Bellman equation is evaluated at 35% of nodes per
iteration, reducing the computation time to 23 seconds.

Note that Assumption 4 does not hold for the Homicidal
Chauffeur game, and in fact the analytical value function is
discontinuous. It is noteworthy that even at a relatively low
rank, the FT-approximation is able to capture the discontinu-
ity in the value function by a sharp local gradient. Also note
that only (ii) of Assumption 14 applies to this game. There-
fore the contractive property of exact DP does not hold, and
FT-based DP is not guaranteed to converge under Theorem
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Fig. 1. Value function for Homicidal Chauffeur.

18. Despite the fact that Homicidal Chauffeur evidently does
not fit within the framework for which analytical guarantees
exist, the computational results indicate the resulting solution
is close to the analytical solution.

B. Aerial Pursuit

The second example is a high-dimensional differential
game with seven state variables. A pursuer with quadrotor
kinematics minimizes the distance to an evader with 3D
Dubins car kinematics. The game is formulated in relative
states with the origin fixed to the evader, leading to the
following equations:

ẋ1 = Vx1
− Ve cosχ

ẋ2 = Vx2
+ Ve sinχ

ẋ3 = Vx3
− vẋ3

V̇x1
= uT−mg

m cosuφ sinuθ

V̇x2
= −uT−mg

m sinuφ

V̇x3 = uT−mg
m cosuφ cosuθ + g

χ̇ = vχ̇

where x1, x2, and x3 are the relative position of the pursuer;
Vx1 , Vx2 , and Vx3 are the corresponding pursuer velocity
components, and χ is the evader heading. The parameters
m, g, and Ve – corresponding to pursuer mass, gravita-
tional acceleration, and evader horizontal speed – are set
to 0.8, 9.81, and 1, respectively. The pursuer control inputs
uT ∈ [−1.5, 1.5], uφ ∈ [−0.4, 0.4], and uθ ∈ [−0.4, 0.4],
correspond to thrust increment, roll angle, and pitch angle,
respectively. The evader control inputs are its vertical speed
vẋ3
∈ [−0.3, 0.3], and heading rate vχ̇ ∈ [−5, 5]. The game

has cost structure (IH) with β = 0.2 and running cost
function g(x, u, v) = 12x2

1 + 12x2
2 + 12x2

3 + 2u2
T + u2

φ +
6u2

θ − 4v2
ẋ3
− 3vχ̇.

The assumptions underlying Theorem 18 are satisfied,
hence FT-based DP is able to converge to within arbitrary
bounds of the exact value function. The algorithm is run on
the domain X = [−3.5, 3.5]×[−3.5, 3.5]×[−2, 2]×[−5, 5]×
[−5, 5]× [−5, 5]× T, where T denotes the circle group.

The multi-grid algorithm is initialized with 20 gridpoints
along each dimension, i.e., n = 20, and progresses to n =
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Fig. 2. Convergence of value function for
Aerial Pursuit.
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Fig. 4. Optimal trajectory for Aerial Pursuit.
Velocity vectors are drawn every time unit.

80. The convergence is shown in Fig. 2 in terms of the norm
of the value function.

Figure 3 shows that at n = 80, the cross-approximation
evaluates the Bellman equation at only about one in 107

nodes; leading to seven orders of magnitude decrease in
computational cost per iteration. Each iteration at n = 80
was performed in about 12 minutes, whereas naive VI
would theoretically take over 200 years per iteration. Total
computation time for all grids was eight hours. The FT
format is a naturally compressed representation of the value
function; storing the final value function (r = 20) requires
1.31 MB, whereas storing the 807 tensor in full format would
require 168 TB (1.68 108 MB).

Optimal trajectories, such as the one shown in Fig. 4, show
the pursuer initially applying a large acceleration to catch up
with the evader. Once the pursuer closes in on the evader the
control effort becomes more conservative, while the distance
remains small. The evader alternates its steering direction so
that the pursuer’s overshoot is maximized.

VII. CONCLUSION

Analysis and computational results of a novel differen-
tial games dynamic-programming-based algorithm that uses
functional tensor-train approximation were presented. The
algorithm uses computational resources that grow polyno-
mially with dimensionality and with the rank of the value
function and is thereby able to alleviate the curse of dimen-
sionality. The proposed algorithm is shown to converge to
optimal solutions with arbitrary bounds for a certain class
of differential games. It is demonstrated in several problem
instances; in case of a seven-dimensional game the value
function representation was obtained with seven orders of
magnitude savings in computational and memory cost, when
compared to standard value iteration.
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