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The advent of increasingly flexible flight vehicles calls for coupled flight dynamic and

aeroelastic modeling. In general, coupled models are dependent on the reduced frequency

parameter. However, this dependency is inconvenient for flight dynamic models as random

gust loads, flight dynamic maneuvers, and high bandwidth control can lead to the excitation

of multiple modes at varying frequencies. In this paper a method for formulating frequency-

independent models using a rational fraction approximation of Theodorsen’s function is

presented. The method consists of regression to Theodorsen’s function in the frequency

domain and realization using aerodynamic lag states to obtain the frequency-independent

state-space equation. While a higher order approximation will result in more accurate

representation of unsteady aerodynamics, it does also result in an increased number of

aerodynamic lag states. Consequently, selection of the approximation order is a trade-off

between the cost of a dynamical system with an increased number of states on one hand,

and the accuracy of the unsteady aerodynamics approximation on the other hand. The

method is applied in order to obtain frequency-independent coupled flight dynamic and

aeroelastic models of a flexible wing transport aircraft for approximations of Theodorsen’s

function of different orders. The resulting models are compared in both the frequency and

time domain in order to assess the cost and accuracy of the approximations.

I. Introduction

In pursuit of energy efficient airframe designs the aircraft industry is utilizing modern lightweight mate-
rials, such as sophisticated composites, at increasing scale. Such materials may be able to provide sufficient
load-carrying capacity at lower weight, leading to reduction of the aircraft operational empty weight (OEW).
At the same time application of these materials may lead to decreased structural rigidity. With increased
flexibility of the airframe, aeroelastic effects become more prominent and can significantly affect aircraft
aerodynamics, potentially leading to degraded aerodynamic efficiency and decrease of control surface effec-
tiveness.

Under the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate
(ARMD), the Fixed Wing/Advanced Air Transport Technology Project is conducting multidisciplinary foun-
dational research to investigate advanced concepts and technologies for future aircraft systems. A NASA
study entitled “Elastically Shaped Future Air Vehicle Concept” was conducted in 20101,2 to examine new
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concepts that can enable active control of wing aeroelasticity to achieve drag reduction. This study showed
that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing
twist and vertical deflection in order to optimize the local angle of attack of wing sections to improve aero-
dynamic efficiency through drag reduction during cruise and enhanced lift performance during take-off and
landing.

As aircraft structures become increasingly flexible and aeroelastic effects become more prominent, an
accurate representation of flight characteristics based on a rigid-body six degrees of freedom (6DOF) flight
dynamic model becomes unachievable. Structural dynamics of the aircraft are intimately coupled with flight
dynamics and must be accounted for in the modeling of flexible flight vehicles. Additionally, aeroservoelastic
interactions demand consideration in the control design. The mishap of the NASA Helios aircraft illustrates
the complex aeroservoelasticity of flexible flight vehicles.3 The need to assess flight performance and handling
qualities and the need to design and simulate flight control systems call for coupled flight dynamic and
aeroservoelastic modeling of flexible flight vehicles.

In general the coupled equations of motion are dependent on the reduced frequency parameter. This form
is very useful for studying flutter since the reduced frequency is usually computed from a flutter solution.
However, for flight dynamic analysis the reduced frequency dependent equation is inconvenient, since one
would not know in advance which elastic modes are excited. Random gust loads, flight dynamic maneuvers,
and high bandwidth control may cause the excitation of multiple modes at a range of different frequencies.
A reduced frequency-dependent formulation may only be based at a single preselected frequency, leading
to misrepresentation of the elastic modes acting at different frequencies. In order to address this difficulty,
various approaches have been proposed.

Using the P-Transform method the most important eigenvalues and eigenvectors are calculated using a
flutter solution and a state-space system is constructed based on these eigenvalues and eigenvectors. This
method provides good results for low damped modes, but for modes that deviate from the flutter solution,
i.e. for damped modes and forced excitations, the accuracy is reduced.4 Frequency domain representations
can also be obtained using unsteady aerodynamic computational fluid dynamics (CFD) models, for example
using the Fourier transform of modal perturbation results.5 A method for computing time domain models
directly from pulse responses from CFD codes without the need to transform to the frequency domain
and back has also been presented.6 If tabulated aerodynamic force data are available for different reduced
frequencies, for example from CFD analysis or experimental results, a time domain representation can
be obtained using various methods, such as Padé approximants7–9 and the well-known Roger’s Rational
Fractional Approximation Method.10 On the other hand, if an analytical model of the aerodynamic forces due
to elastic deformation is available, a direct approximation of Theodorsen’s function11 in the frequency domain
can be used.9,12 An approximation to Wagner’s function,13 the time domain equivalent of Theodorsen’s
function, which gives the circulatory lift response to a step change in upwash at the 3

4 chord point,14 is also
applicable.15,16

In this paper a method that applies mixed real and complex linear regression to straightforwardly obtain
a frequency domain approximation of any order and a corresponding state space realization is provided. The
approximation method is applied in order to formulate a reduced frequency-independent elastic state space
model of the Elastically Shaped Aircraft Concept (ESAC). The resulting model is then coupled to a 6DOF
flight dynamic model and a comparison of the performance and cost of different order approximations is
presented.

II. Overview of Elastically Shaped Aircraft Concept and Variable Camber

Continuous Trailing Edge Flap

The ESAC is modeled as a notional single-aisle, mid-size, 200-passenger aircraft. The geometry of the
ESAC is obtained by scaling up the geometry of the NASA Generic Transport Model (GTM) by a ratio of
200:11. The GTM is a research platform that includes a wind tunnel model and a remotely piloted vehicle,
as shown in Figure 1. Figure 2 is an illustration of the GTM geometry. The reason for selecting the GTM is
that there already exists an extensive wind tunnel aerodynamic database that could be used for validation
in the study. The benchmark configuration represents one of the most common types of transport aircraft
in the commercial aviation sector that provides short-to-medium range passenger carrying capacities.

The aircraft has a take-off weight of 200,000 lbs for a typical operating load (gear up, flap up) that
includes cargo, fuel, and passengers.
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Figure 1: Boeing 757 and GTM Remotely Piloted Vehicle at NASA Langley Research Center

Figure 2: GTM Geometry
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To compute the mass and inertia properties of the benchmark aircraft, a component-based approach
is used. The aircraft is divided into the following components: fuselage, wings, horizontal tails, vertical
tail, engines, OEW equipment, and typical load including passengers, cargo, and fuel. The fuselage, wings,
horizontal tails, and vertical tail are modeled as shell structures with constant wall thicknesses.17 Based on
publicly available data of component weight breakdown for various aircraft,18 an average wing mass relative
to the total empty weight of the aircraft is taken to be 24.2% of the OEW.

To enable active wing shaping control, the wing structures of the ESAC are designed to increase wing
flexibility. The wing bending and torsional stiffnesses are designed to achieve a wing deflection that is about
double that of a conventional aircraft wing.

For the purpose of aeroelastic shaping control a continuous flap system called the Variable Camber
Continuous Trailing Edge Flap (VCCTEF) was introduced.1,2 The VCCTEF consists of 15 flap sections
attached to the outer wing and one flap section attached to the inner wing, as shown in Figure 3. Each
section consists of three flap segments that can be individually commanded, as shown in Figure 4. These
camber flaps are joined to the adjacent sections by a flexible and supported material with the same camber,
resulting in a continuous flap system throughout the wing span with no drag producing gaps.

Using the camber positioning, a full-span, low-drag, high-lift configuration can be activated. The camber
positioning is achieved using all three flap segments. The leading two segments are actuated by means of a
shape memory alloy, while the trailing edge segment is actuated using a fast electro-mechanical actuator and
can therefore also be applied for flight dynamic maneuvers and high-bandwidth control purposes, such as
flutter suppression and gust alleviation. The bandwidth of the shape memory alloy actuator is several orders
of magnitude lower than the bandwidth of the electro-mechanical actuator. Due to separation of timescales
the modeling of the leading two segments is less relevant from a flight dynamic and aeroservoelastic point
of view, hence the model used for the simulations presented in this paper only includes the dynamics of the
32 fast-acting trailing edge segments. The effect of the first two segments is assumed constant and can be
included in the wing geometry.

Since the implementation of the unsteady aerodynamics approximation by means of lag states is similar
for the VCCTEF as for the elastic wing, it was chosen to not explicitly show the equations governing the
VCCTEF dynamics. The coupling of the VCCTEF model to the flight dynamic and elastic wing model is
however shown.

III. Unsteady Aerodynamics Approximation

The aerodynamic forces acting on an oscillating airfoil consist of non-circulatory and circulatory contri-
butions. The non-circulatory contribution results from the change in momentum of surrounding air due to
the oscillatory motion of the airfoil. In the case of an oscillating airfoil the circulation in the bound vortex
changes, and by Kelvin’s circulation theorem an equal but opposite amount of circulation is added to the
wake vortex. The increment in wake circulation induces a velocity increment at the airfoil, resulting in a
phase lag and decrease in circulatory lift for an oscillating airfoil.

An expression for the effect of phase lag and decrease in lift as a function of the reduced frequency k of
a harmonically oscillating airfoil is given by Theodorsen’s function11

C(k) = F (k) + iG(k) (1)

where F (k) ≥ 0.5, G(k) ≤ 0, and

k =
ωc

2V
(2)

with ω the oscillation frequency, c the airfoil chord, and V the free stream airspeed. The functions F (k) and
G(k) are defined in terms of Bessel functions.11

A. Mixed Real and Complex Linear Regression

An algorithm for approximation of a complex-valued frequency response function using rational polynomials
with real constants is given in this section.19 For the present purpose of approximating Theodorsen’s function
the method was extended to include asymptotic constraints for k → 0 and k → ∞.
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Figure 3: GTM wing with VCCTEF

Figure 4: Variable Camber Flap
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The approximation of Theodorsen’s function C(k) is given by the rational frequency response function

C̄(k) =
bn(ik)

n
+ bn−1(ik)

n−1
+ ...+ b1(ik) + b0

(ik)
n
+ an−1(ik)

n−1
+ ...+ a1(ik) + a0

=
B(k)

A(k)
(3)

The first asymptotic constraint
�

�C̄(k)
�

� → 1 and 6 C̄(k) → 0 as k → 0 is satisfied by the necessary and
sufficient condition that a0 = b0. It should be noted that the numerator and denominator polynomials are
of the same order, i.e. the corresponding transfer function is biproper. This, together with the condition
bn = 1

2 , is necessary and sufficient to satisfy the second asymptotic constraint
�

�C̄(k)
�

� → 1
2 and 6 C̄(k) → 0

as k → ∞.
The error of the approximation is defined by

ε(k) = C̄(k)− C(k) (4)

The error is expressed as a function that is affine in the coefficients of A(k) and B(k) using the approximation

ε̄(k) =
Bm(k)

Am−1(k)
− Am(k)

Am−1(k)
C(k) (5)

where the subscripts indicate the regression iteration number.19 It is apparent that as the solution converges

then ε̄(k) → ε(k), since Am(k)
Am−1(k)

→ 1. By defining the solution vector of polynomial coefficients

u =
h

an−1 · · · a0 bn−1 · · · b1

i⊤

(6)

an w × 1, with w the number of frequency samples, error vector can be defined by

ε̄ = D + Su (7)

where

D =









!

1
2 − C(k1)

� (ik1)
n

Am−1(k1)

...
!

1
2 − C(kw)

� (ikw)n

Am−1(kw)









(8)

and

S =









−C(k1)(ik1)
n−1

Am−1(k1)
· · · −C(k1)(ik1)

Am−1(k1)

...
. . .

...

−C(kw)(ikw)n−1

Am−1(kw) · · · −C(kw)(ikw)
Am−1(kw)

− C(k1)−1
Am−1(k1)

...

− C(kw)−1
Am−1(kw)

�

�

�

�

�

�

�

�

(ik1)
n−1

Am−1(k1)
· · · (ik1)

Am−1(k1)

...
. . .

...
(ikw)n−1

Am−1(kw) · · · (ikw)
Am−1(kw)









(9)

The cost function to be minimized is

σ2 = (W ε)
∗
(W ε) (10)

where W is a weighting matrix. The asterisk denotes the conjugate transpose. The cost is minimized by
iteratively solving19

u = Re{(S∗W ∗) (W ∗S∗)}−1
Re {(S∗W ∗) (−WD)} (11)

Existing work extends the application of Theodorsen’s function to airfoils in arbitrary motion.20,21 The
imaginary variable ik can be replaced by the complex-valued reduced Laplace variable s̄ = sc

2V , leading to
the transfer function

C̄(s̄) =
bns̄

n + bn−1s̄
n−1 + ...+ b1s̄+ b0

s̄n + an−1s̄n−1 + ...+ a1s̄+ a0
(12)

Results of the regression scheme for several values of n, along with Theodorsen’s function, are shown in
Figure 5. The corresponding errors are shown in Figure 6. The coefficients are given in Tables 1 and 2.

In Figure 5 it can be seen that the approximations for n ≥ 4 are right on top of Theodorsen’s function.
Table 3 does indeed show that there is little added benefit to approximations of higher order.
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Figure 5: Frequency response plot of Theodorsen’s function and approximations
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Figure 6: Magnitude of approximation errors

Table 1: Numerator coefficients of approximations

n b0 b1 b2 b3 b4 b5

1 1.646 · 10−1 5.000 · 10−1

2 1.463 · 10−2 2.814 · 10−1 5.000 · 10−1

3 7.891 · 10−4 5.416 · 10−2 4.020 · 10−1 5.000 · 10−1

4 2.829 · 10−5 5.410 · 10−3 1.217 · 10−1 5.306 · 10−1 5.000 · 10−1

5 7.960 · 10−7 3.492 · 10−4 1.936 · 10−2 2.252 · 10−1 6.724 · 10−1 5.000 · 10−1
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Table 2: Denominator coefficients of approximations

n a0 a1 a2 a3 a4

1 1.646 · 10−1

2 1.463 · 10−2 3.492 · 10−1

3 7.891 · 10−4 5.876 · 10−2 5.704 · 10−1

4 2.829 · 10−5 5.603 · 10−3 1.442 · 10−1 8.189 · 10−1

5 7.960 · 10−7 3.552 · 10−4 2.112 · 10−2 2.891 · 10−1 1.099

Table 3: Norm of error of approximations

n kεk
∞

[dB]

1 -24.07

2 -36.99

3 -47.07

4 -55.89

5 -64.13

B. State-Space Realization

A minimal state-space realization of the transfer functions that are obtained using the regression scheme
can be formulated in multiple forms, such as controller canonical form and forms based on partial fraction
expansion. Several forms consisting of either first or second order differential equations were implemented
and compared. It was found that discrepancies due to numerical differences between the state-space realiza-
tions are negligible if the realization methods are all carefully and consistently implemented while keeping
numerical effects in mind. None of the realizations was found to be particularly advantageous or disadvanta-
geous with regard to numerical stability. Differences in the sparsity of the dynamics matrices of the resulting
elastic wing systems do however exist, and may lead to differences in computational cost of simulations. A
realization based on full partial fraction expansion was found to give a convenient generic expression for the
realization of nth-order approximations.

The approximation is first expanded into a summation of first order transfer functions. These trans-
fer functions have real coefficients, since the poles of C̄(s̄) are all real, due to the convergent nature of
Theodorsen’s function. The partial fraction expansion is given by

C̄(s̄) =
bns̄

n + bn−1s̄
n−1 + ...+ b1s̄+ b0

s̄n + an−1s̄n−1 + ...+ a1s̄+ a0
=

rn

s̄− pn
+

rn−1

s̄− pn−1
+ ...+

r1

s̄− p1
+ ks (13)

where ks =
1
2 if the asymptotic contraint for k → ∞ is enforced. The state-space realization of

Υ(s) = C̄(s̄)Ξ(s) (14)

where Ξ(s) is some input signal and Υ(s) is the corresponding response, is then based on the system of first
order differential equations

υ(t) = yn + yn−1 + ...+ y1 + ksξ(t) (15)

with
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c

2V
ẏn − pnyn =rnξ(t) (16)

c

2V
ẏn−1 − pn−1yn−1 =rn−1ξ(t) (17)

...
c

2V
ẏ1 − p1y1 =r1ξ(t) (18)

and

υ(t) =L
−1 {Υ(s)} (19)

ξ(t) =L
−1 {Ξ(s)} (20)

IV. Finite Element Analysis

A vortex-lattice model of the flexible wing ESAC was developed to provide stability and control derivatives
for the flight dynamic model and the aerodynamic data for the aeroelastic finite-element method (FEM).22

The aero-propulsive-elastic equations for the ESAC were derived using the FEM based on one-dimensional
structural dynamic theory that models the wing structure as a beam in a coupled bending-torsion motion.12

For brevity only the resulting elemental system of equations is presented below.

Miẍi +Ciẋi +Ck
i C (k) ẋi +Kixi +Kk

i C (k)xi = Fi (xr, ẋr, δ) (21)

The matrices Mi, Ci, and Ki contain structural, propulsive, and non-circulatory aerodynamic contributions.
The matricesCk

i andKk
i contain quasi-steady circulatory aerodynamic contributions and are multiplied with

Theodorsen’s function for the relevant element and degree of freedom. The vector Fi (xr, ẋr, δ) contains
external forces due to the aircraft body and VCCTEF states. The variable δ is used to represent the
complete state of the VCCTEF, including the deflections, deflection rates, deflection acceleration, and the
aerodynamic lag states corresponding to VCCTEF deflection and deflection rates.

The elemental system of equations can be re-written using an nth-order approximation of Theodorsen’s
function. This adds 2×n×d aerodynamic lag states per element to the model, with d the number of degrees
of freedom per element, leading to the elemental equation

Miẍi +
!

Ci + ksC
k
i

�

ẋi +
!

Ki + ksK
k
i

�

xi +Kk
i yni

+Kk
i yn−1i + ...+Kk

i y1i

+Ck
i zni

+Ck
i zn−1i + ...+Ck

i z1i = Fi(xr, ẋr, δ) (22)

where

c̄i

2V∞

ẏni
+ pnyni

=rnxi (23)

c̄i

2V∞

ẏn−1i + pn−1yn−1i =rn−1xi (24)

...

c̄i

2V∞

ẏ1i + p1y1i =r1xi (25)

c̄i

2V∞

żni
+ pnzni

=rnẋi (26)

c̄i

2V∞

żn−1i + pn−1zn−1i =rn−1ẋi (27)

...

c̄i

2V∞

ż1i + p1z1i =r1ẋi (28)
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The discrete global approximation system is formed by enforcing equilibrium conditions at element in-
terfaces and summing each element matrix during the assembly process, resulting in

M =
n
X

i=1

Mi (29)

C =

n
X

i=1

!

Ci + ksC
k
i

�

(30)

Ck =
n
X

i=1

Ck
i (31)

K =

n
X

i=1

!

Ki + 0.5Kk
i

�

(32)

Kk =
n
X

i=1

Kk
i (33)

F (xr, ẋr, δ) =

n
X

i=1

Fi(xr, ẋr, δ) (34)

N =
n
X

i=1

c̄i

2V∞

(35)

where c̄i is the average chord of the i-th element. The state-space equation is given by
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ż
n

ż
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where xe =
h

w1 w
′

1 v1 v
′

1 θ1 . . . wm+1 w
′

m+1 vm+1 v
′

m+1 θm+1

i⊤

, with m + 1 the total

number of nodes, is the nodal displacement vector. Note that the aeroelastic state-space equation is coupled
with aircraft flight dynamics and VCCTEF dynamics through the force term F (xr, ẋr, δ).

V. Flight Dynamic Coupling

Consider the motion of a rigid aircraft. The equations of motion that describe flight dynamics are
described by the six kinematical equations

ẋ =u cos θ cosψ + v (− cosφ sinψ + sinφ sin θ cosψ) + w (sinφ sinψ + cosφ sin θ cosψ) (37)

ẏ =u cos θ sinψ + v (cosφ cosψ + sinφ sin θ sinψ) + w (− sinφ cosψ + cosφ sin θ sinψ) (38)

ḣ =u sin θ − v sinφ cos θ − w cosφ cos θ (39)

φ̇ =p+ q sinφ tan θ + r cosφ tan θ (40)

θ̇ =q cosφ− r sinφ (41)

ψ̇ =q sinφ sec θ + r cosφ sec θ (42)

and six dynamical equations

ma (u̇+ qw − rv) =CXq∞S + T −mag sin θ (43)

ma (v̇ + ru− pw) =CY q∞S +mag cos θ sinφ (44)

ma (ẇ + pv − qu) =CZq∞S +mag cos θ cosφ (45)

Īxxṗ− Īxy q̇ − Īxz ṙ − Īxzpq + Īxypr +
!

Īzz − Īyy
�

qr + Īyz
!

r2 − q2
�

=Clq∞Sb (46)

−Īxy ṗ+ Īyy q̇ − Īyz ṙ + Īyzpq − Īxyqr +
!

Īxx − Īzz
�

pr + Īxz
!

p2 − r2
�

=Cmq∞Sc̄+ Tze (47)

−Īxz ṗ− Īyz q̇ + Īzz ṙ − Īyzpr + Īxzqr +
!

Īyy − Īxx
�

pq + Īxy
!

q2 − p2
�

=Cnq∞Sb (48)

where ma is the aircraft mass; S is the aircraft reference wing area; Īxx, Īyy, Īzz, Īxy, Īxz, Īyz are the aircraft
principal moment of inertia; c̄ is the mean aerodynamic chord; b is the wing span; ze is the offset of the
thrust line below the aircraft CG; φ, θ, ψ are the aircraft Euler angles, and CX , CY , and CZ are the force
coefficients expressed in the aircraft body fixed reference frame.

A. Unsteady Aerodynamic Coefficients due to Aeroelasticity

The aerodynamic coefficients CL, CD, Cy, Cl, Cm, and Cn are influenced by the aeroelastic deflections
of the aircraft wings. Therefore, the flight dynamic equations of motion of the aircraft are coupled with
the aeroelastic equations via the aerodynamic coefficients. The motion can be decomposed into symmetric
and anti-symmetric motions. The lift, drag, and pitching moment coefficients are influenced by symmetric
aeroelastic modes, while the side force, rolling moment, and yawing moment coefficients are influenced by
anti-symmetric aeroelastic modes.

Due to the joining of the VVCTEF segments to the elastic wing, the wing deformation will also cause an
aerodynamic hinge moment on the flap hinges. The corresponding coefficients are indicated as CHif

with

if ∈ {1, 2, .., 32} the index of the appropriate fast-acting flap segment.
The aeroelastic contributions to the aerodynamic coefficients are expressed as

ΔCa = Caẍe
ẍe+Caẋe

ẋe+Caxe
xe+

h

Caya
Caya

· · · Caya

i

ya+
h

Caza
Caza

· · · Caza

i

za (49)

where Ca is a dummy notation that stands for CL, CD, CY , Cl, Cm, Cn or CHi
,

ya =
h

yn
⊤ yn−1

⊤ · · · y1
⊤

i⊤

and za =
h

zn
⊤ zn−1

⊤ · · · z1
⊤

i⊤

are aerodynamic lag states, and
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Caẍe
=

n
X

i=1

Caẍi
(50)

Caẋe
=

n
X

i=1

�

Caẋi
+ ksC

k
aẋi

�

(51)

Caxe
=

n
X

i=1

�

ksC
k
axi

�

(52)

Caya
=

n
X

i=1

Ck
axi

(53)

Caza
=

n
X

i=1

Ck
aẋi

(54)

with again the superscript k indicating the circulatory aerodynamic contributions. The aircraft flight dy-
namic equation is then expressed as

ẋr = f (ẋr,xr, ẍe, ẋe,xe,ya, za, δ, δe, δr) (55)

which is coupled with the flexible wing aeroelastic state-space equation.

B. Modal Decoupling

The aeroelastic state-space equation can be expressed in terms of the generalized coordinates η by the coor-
dinate transformation xe = Φη, where Φ is the eigenfunction matrix. By pre-multiplying the transformed
aeroelastic state-space equation by Φ⊤, this results in

Φ⊤MΦη̈ +Φ⊤CΦη̇ +Φ⊤KΦη +Φ⊤Lya +Φ⊤Oza = Φ⊤F (ẋr,xr, δ) (56)

where L =
h

Kk Kk · · · Kk
i

and O =
h

Ck Ck · · · Ck
i

. The generalized aeroelastic state-

space equation can be partitioned as

"

Moo Moe

Meo Mee

#"

η̈o

η̈e

#

+

"

Coo Coe

Ceo Cee

#"

η̇o

η̇e

#

+

"

Koo Koe

Keo Kee

#"

ηo

ηe

#

+

"

Lo

Le

#

ya +

"

Oo

Oe

#

za =

"

Foẋr

Feẋr

#

ẋr +

"

Foxr

Fexr

#

xr +

"

Foδ

Feδ

#

δ (57)

where ηo is the generalized coordinate vector of the rigid-body modes which needs to be eliminated as it is
already accounted for in the 6DOF nonlinear flight dynamic model, and Foẋr

, Feẋr
, Foxr

, Fexr
, Foδ , and

Feδ are the generalized aerodynamic forces due to the flight dynamic and control states.12

Note that, while the nodal displacement vector is transformed into the generalized coordinate reference
frame, the aerodynamic lag state vectors ya and za remain in the physical coordinate reference frame. The
aerodynamic lag states can straightforwardly be transformed to the generalized coordinate reference frame
in the same manner as the nodal displacement vector is transformed. This may especially be beneficial for
the creation of a reduced order model.

The incremental aerodynamic coefficients due to wing aeroelasticity are transformed into the generalized
coordinates

Caη̈e
=Caẍo

Φoe +Caẍe
Φee (58)

Caη̇e
=Caẋo

Φoe +Caẋe
Φee (59)

Caηe
=Caxo

Φoe +Caxe
Φee (60)

where Φoe, and Φee are partitioned matrices of Φ.
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C. Coupled State-Space Equation

For the purpose of coupling the aeroelastic equation with a nonlinear 6DOF flight dynamic model an aeroe-
lastic state-space system with inputs ẋr, xr, and δ is formulated. The system’s outputs ΔCa are fed back
into the flight dynamic model. In case the aeroelastic equation is to be coupled with a linear flight dy-
namic model, for example in order to perform eigenvalue analysis of the coupled system, this can be done
straightforwardly by expanding the matrices M̄ and S̄ with elements from D̄ , Ē , Ḡ, and the flight dynamic
state-space equation

M̄

"

ẋs

ẋa

#

= S̄

"

xs

xa

#

+ Ē







ẋr

xr

δ






(61)

[Ce] = D̄

"

ẋs

ẋa

#

+ Ḡ

"

xs

xa

#

(62)

where xs =
h

ηe η̇e

i⊤

is the elastic state vector, xa =
h

ya za

i⊤

is the aerodynamic lag state vector,

and Ce =
h

ΔCL ΔCD ΔCY ΔCl ΔCm ΔCn ΔCH
⊤

i⊤

, with

ΔCH =
h

ΔCH1
ΔCH2

· · · ΔCH32

i⊤

, contains the incremental aerodynamic coefficients due to wing

aeroelasticity. The matrices are defined as

M̄ =

"

Mss 0

0 Maa

#

(63)

S̄ =

"

Sss Ssa

Sas Saa

#

(64)

Ē =

"

Eẋr
Exr

Eδ

0 0 0

#

(65)

D̄ =
h

Ds 0
i

(66)

Ḡ =
h

Gs Ga

i

(67)

where

Mss =

"

I 0

0 Mee

#

(68)

Maa =I ⊗N (69)

Sss =

"

0 I

−Kee −Cee

#

(70)

Ssa =

"

0 0

−Le −Oe

#

(71)

(72)
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Sas =













































rn

rn−1

...

r1













⊗
"

Φoe

Φee

#

0

0













rn

rn−1

...

r1













⊗
"

Φoe

Φee

#

































(73)

Saa =













pn 0 · · · 0

0 pn−1 · · · 0
...

...
. . .

...

0 0 · · · p1













⊗ I (74)

Eẋr
=

"

0

Feẋr

#

(75)

Exr
=

"

0

Fexr

#

(76)

Eδ =

"

0

Feδ

#

(77)

Ds =

"

0 0 0 0 0 0 0

CLη̈e
CDη̈e

CYη̈e
Clη̈e

Cmη̈e
Cnη̈e

CHη̈e

⊤

#⊤

(78)

Gs =

"

CLηe
CDηe

CYηe
Clηe

Cmηe
Cnηe

CHηe

⊤

CLη̇e
CDη̇e

CYη̇e
Clη̇e

Cmη̇e
Cnη̇e

CHη̇e

⊤

#⊤

(79)

Ga =

























CLya
CLya

· · · CLya
CLza

CLza
· · · CLza

CDya
CDya

· · · CDya
CDza

CDza
· · · CDza

CYya
CYya

· · · CYya
CYza

CYza
· · · CYza

Clya
Clya

· · · Clya
Clza

Clza
· · · Clza

Cmya
Cmya

· · · Cmya
Cmza

Cmza
· · · Cmza

Cnya
Cnya

· · · Cnya
Cnza

Cnza
· · · Cnza

CHya
CHya

· · · CHya
CHza

CHza
· · · CHza

























(80)

VI. Modal Analysis

An eigenvalue analysis of the coupled system is performed in order to assess the influence of the unsteady
aerodynamics approximation on the frequency and damping of the flight dynamic and aeroelastic modes.
The linearized coupled system is obtained by trimming the coupled nonlinear flight dynamic and linear
aeroelastic system using the elevator, and then linearizing the flight dynamic equation at the trim condition.
The trimming routine gives the same results for all approximations, since it calculates a static aeroelastic
solution that is a function of the steady-state gain of the approximating transfer function. This steady-state
gain is equal for all approximations because of the asymptotic constraint at k → 0.

A. Coupled Flight Dynamic and Elastic Modes

Due to the coupling of flight dynamic and aeroelasic modes, the unsteady aerodynamics approximation does
not only influence frequency and damping of the aeroelastic modes, but also of the flight dynamic modes.
An overview of the pole locations for oscillatory flight dynamic modes and the first six aeroelastic modes
in cruise flight at Mach 0.797 and 36,000 ft altitude for various approximations is given in Tables 4, 5, and
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6. Values are also given for a frequency-dependent model. The term frequency-dependent herein refers to
a coupled flight dynamic and aeroelastic model without lag states, i.e. with a constant complex value for
C(k) that is set using a preselected frequency.12 The preselected frequency is set at the frequency of the
first elastic wing mode, i.e. the mode that is closest in frequency to the aircraft body modes.

The shapes of the first six structural elastic modes are shown in Figure 7. The structural mode shapes
are determined using the structural mass and stiffness matrices and are thus independent of the unsteady
aerodynamics approximation. The pole locations in Tables 5 and 6 correspond to the aeroelastic modes in
cruise flight. Due to aerodynamic coupling of modes the aeroelastic modes are slightly differently shaped.

Table 4: Pole locations of oscillatory flight dynamic modes of ESAC at Mach 0.797 and 36,000 ft altitude
for rigid-body (RB), frequency-dependent (FD) at ω = 9 rad/s, and approximation models

n Phugoid Short Period Dutch Roll

RB −7.0837 · 10−4 ± 6.7051 · 10−2i −6.9114 · 10−1 ± 1.4277i −3.1879 · 10−1 ± 1.4308i

FD −1.2386 · 10−4 ± 6.7977 · 10−2i −6.5416 · 10−1 ± 1.3862i −3.4926 · 10−1 ± 1.4541i

1 −1.1410 · 10−4 ± 6.8021 · 10−2i −6.4592 · 10−1 ± 1.3817i −3.4911 · 10−1 ± 1.4527i

2 −1.1465 · 10−4 ± 6.8021 · 10−2i −6.4494 · 10−1 ± 1.3802i −3.4933 · 10−1 ± 1.4527i

3 −1.1508 · 10−4 ± 6.8021 · 10−2i −6.4614 · 10−1 ± 1.3785i −3.4943 · 10−1 ± 1.4528i

4 −1.1540 · 10−4 ± 6.8021 · 10−2i −6.4722 · 10−1 ± 1.3800i −3.4936 · 10−1 ± 1.4528i

5 −1.1548 · 10−4 ± 6.8021 · 10−2i −6.4627 · 10−1 ± 1.3799i −3.4938 · 10−1 ± 1.4528i

Table 5: Pole locations of symmetric aeroelastic modes of ESAC at Mach 0.797 and 36,000 ft altitude for
frequency-dependent (FD) at ω = 9 rad/s, and approximation models

n First Mode Second Mode Third Mode

FD −6.9276 · 10−1 ± 9.0032i −3.3504 · 10−1 ± 21.410i −1.0155± 23.291i

1 −8.1369 · 10−1 ± 9.2633i −3.8582 · 10−1 ± 21.439i −8.4195 · 10−1 ± 23.300i

2 −6.8942 · 10−1 ± 9.0952i −4.9909 · 10−1 ± 21.253i −6.9739 · 10−1 ± 23.256i

3 −7.4991 · 10−1 ± 9.0970i −4.6759 · 10−1 ± 21.285i −7.1627 · 10−1 ± 23.271i

4 −7.3394 · 10−1 ± 9.0933i −4.8307 · 10−1 ± 21.284i −7.1428 · 10−1 ± 23.261i

5 −7.3981 · 10−1 ± 9.0957i −4.7962 · 10−1 ± 21.280i −7.1216 · 10−1 ± 23.264i

Table 6: Pole locations of asymmetric aeroelastic modes of ESAC at Mach 0.797 and 36,000 ft altitude for
frequency-dependent (FD) at ω = 9 rad/s, and approximation models

n First Mode Second Mode Third Mode

FD −7.1968 · 10−1 ± 14.613i −8.4312 · 10−1 ± 22.742i −1.4565± 33.834i

1 −8.0301 · 10−1 ± 14.703i −7.0508 · 10−1 ± 22.835i −9.0543 · 10−1 ± 33.820i

2 −7.9338 · 10−1 ± 14.428i −6.0730 · 10−1 ± 22.808i −9.3867 · 10−1 ± 33.700i

3 −8.1273 · 10−1 ± 14.479i −6.1898 · 10−1 ± 22.820i −9.0840 · 10−1 ± 33.706i

4 −8.1596 · 10−1 ± 14.462i −6.1837 · 10−1 ± 22.813i −9.1535 · 10−1 ± 33.714i

5 −8.1303 · 10−1 ± 14.466i −6.1665 · 10−1 ± 22.815i −9.1707 · 10−1 ± 33.710i

It can be seen that the coupling of the flight dynamic model to the aeroelastic wing model has a large
influence on frequency and damping of the oscillatory flight dynamic modes. Inspection of Table 4 shows
that even for low values of n the frequency-independent models are able to approximate the coupled flight
dynamic modes quite well. The pole locations of the frequency-dependent model clearly deviate somewhat,
but are still close to those of the approximation models. This is also shown in Figure 8, where the poles
corresponding to the flight dynamic modes from all of the coupled models are right on top of each other.

The frequency-dependent model is most accurate for modes around the preselected frequency ω = 9
rad/s. These are the modes that are most strongly coupled with the flight dynamic modes. The model does
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Symmetric Mode 3
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Figure 7: Structural elastic mode shapes of ESAC

however become less accurate at frequencies further away from the preselected frequency, leading to large
errors in damping for high frequency aeroelastic modes.

The approximation models show convergence of the pole locations for n ≥ 3. This can also be seen in
Figure 8, where the pole locations for n ≥ 3 coincide. Although the approximation error decreases with
increasing approximation order, no exact convergence of the pole locations can be observed in Tables 4, 5,
and 6. The reason for this is that the number of state variables increases due to the addition of aerodynamic
lag states, which causes the dynamics matrix to become very large, e.g. the full order ESAC state grows
from 415 variables for the frequency-dependent model to 2425 variables for the fifth-order approximation.
The calculation of eigenvalues for large asymmetric matrices is numerically sensitive. Consequently, even for
very high order approximations no exact convergence can be seen in calculated eigenvalues.

The pole locations corresponding to the first-order model are often relatively far from those corresponding
to the higher-order models. In some cases even more so than those corresponding to the frequency-dependent
model. For most of the modes, the second-order model is in relatively good agreement with the higher-order
models.

B. Flutter Analysis

The model is trimmed at increasing Mach in order to determine the flutter speed for each unsteady aero-
dynamics approximation. Circulatory aerodynamic coefficients are calculated from a linear potential flow
solution that is corrected for compressibility effects at each Mach number. Non-circulatory forces are cal-
culated using linear incompressible piston theory. A solution that takes into account compressibility and
transonic effects on all aerodynamic forces could be obtained from an Euler solution for unsteady aerody-
namics coupled to a viscous boundary layer model, but would be much more computationally involved to
obtain.

The flutter speeds are given in Table 7. Frequency and aerodynamic damping for the first six aeroelastic
modes at increasing Mach number are shown in Figures 9 and 10.

In all cases it is the second symmetric mode that goes unstable first. In the frequency-dependent and
first-order approximation models the damping of the mode is underestimated, leading to a lower flutter
speed. The damping is somewhat overestimated in the second-order model, leading to a slightly higher
flutter speed.

Overall it can be seen that for most modes, relatively large discrepancies exist between the frequency-
dependent model, the first-order model, and the models using approximations of order n ≥ 2. In most
cases the second-order and third-order approximation models are both very close to the fourth-order and
fifth-order approximation models. The latter two models give identical results in almost all cases.
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Figure 8: Pole locations of rigid-body (RB) and coupled ESAC for frequency-dependent (FD) at ω = 9
rad/s, and approximation models at Mach 0.797 and 36,000 ft altitude

Table 7: ESAC flutter speed at 36,000 ft altitude for frequency-dependent (FD) at ω = 9 rad/s, and
approximation models

n Flutter speed [Mach]

FD 0.857

1 0.858

2 0.884

3 0.878

4 0.880

5 0.880
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Figure 9: Frequency of ESAC aeroelastic modes for frequency-dependent (FD) at ω = 9 rad/s, and approx-
imation models
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Figure 10: Aerodynamic damping of ESAC aeroelastic modes for frequency-dependent (FD) at ω = 9 rad/s,
and approximation models
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VII. Numerical Simulation

Numerical simulations were performed using a nonlinear 6DOF flight dynamic model coupled with the
full order linear aeroelastic model.

A. Numerical Integration

As simulation is performed using the full order aeroelastic model, aeroelastic modes at very high frequencies
(up to the order of 104 rad/s) are present. If an inappropriate integration method is used or the time step
is not taken sufficiently small this may cause numerical instability.

The location of the poles corresponding to the aerodynamic lag states is dependent on the coefficients of
the approximation, the local chord length, and the free stream airspeed. For the nth-order approximation
these pole locations are given by

σi,j =
2V∞pj

ci
(81)

where i indicates the wing section and j ∈ {n, n − 1, .., 1}. The most negative pole location is found for
the smallest chord length and thus corresponds to the lag states at the wing tip. An overview of the most
negative lag state poles for various approximations is given in Table 8.

Table 8: Most negative pole locations corresponding to ESAC aerodynamic lag states

n Pole location

1 -44.74

2 -81.44

3 -119.4

4 -159.6

5 -202.7

The stiffness that is introduced into the system of differential equations by the aerodynamic lag states can
lead to numerical instability in some, most notably explicit, integration methods. On the other hand, some
integration methods, such as the implicit Euler method, introduce numerical damping, which can lead to
numerical stabilization of unstable modes. In order to address both of these potential issues, Newmark-β23

was selected the as integration method.
By selecting coefficients β = 0.25 and γ = 0.5, constant acceleration is assumed. Using these coefficients

the method is unconditionally stable, has a stability region that coincides with the left half plane, and is
O
!

Δt2
�

accurate. In cases where unconditional stability is not required, e.g. for simulation of a reduced
order model with only poles at limited frequency, higher accuracy can be obtained by selecting different
coefficients.

The coupled system consists of linear second-order differential equations for the elastic wing, linear first-
order differential equations for the aerodynamic lag states, and nonlinear first-order differential equations for
the aircraft dynamics and kinematics. The linear system is integrated using a hybrid scheme that combines
the Newmark-β method for second-order equations with a second-order multistep method for the linear first-
order equations. In case β = 0.25 and γ = 0.5 are selected, this scheme is equivalent to the trapezoidal rule
with constant acceleration for the second-order equations and constant speed for the first-order equations.
The nonlinear differential equations are integrated using a fourth-order Runge-Kutta scheme.

B. Computational Cost

The total number of aerodynamic lag states N for the flexible wing model is given by

N = 2× n× (m+ 1)× d (82)

where n is the order of the unsteady aerodynamics approximation, (m + 1) is the number of FEM nodes
on the wing, and d is the number of degrees of freedom per node. Similar to the wing deflection state
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the aerodynamic lag states can also be transformed into modal coordinates. In that case the number of
aerodynamic lag states is given by

N = 2× n×m (83)

where m is the number of aeroelastic modes.
In both cases the number of aerodynamic lag states is proportional to the order of the approximation.

For higher order approximations this can lead to a large increase in the size of the dynamics matrices, e.g.
if the lag states are expressed in modal coordinates a fourth-order approximation will add 144 aerodynamic
lag states to a system that includes 18 aeroelastic modes.

Additionally, aerodynamic lag states are required to model the unsteady aerodynamics of high-bandwidth
control surfaces. For the VCCTEF, which has 32 high-bandwidth flap segments, a fourth-order approxima-
tion would add 256 aerodynamic lag states.

The addition of a large amount of aerodynamic lag states to the system will increase computational cost
of simulations and other computations. The order of approximation should therefore be selected keeping in
mind the required accuracy and the maximum acceptable system size. One could for example use a reduced
order model with a low order approximation for controller design, while using a full order model with a
higher order approximation to evaluate controller performance.

C. Dynamic Responses

Simulations were performed in order to assess the influence of the unsteady aerodynamics approximations
on the dynamic responses of the ESAC. The simulations are initialized in cruise condition at Mach 0.797
and 36,000 ft altitude. Due to its joining to the elastic wing, the VCCTEF is well capable of exciting various
aeroelastic modes. The flight dynamic response to a 2 × 5 s asymmetric VCCTEF doublet followed by a
2× 15 s symmetric VCCTEF doublet is shown in Figure 11. The corresponding responses of the first three
symmetric and the first three asymmetric elastic wing modes are shown in Figures 12 and 13, respectively.

The VCCTEF doublet consists of a semi-sinusoidally shaped deflection on each wing. The deflection
shape is shown in Figure 14. The deflection is equal for both wings in the case of a symmetric doublet, and
opposite in the case of an asymmetric doublet.

Figures 11, 12, and 13 show dynamic responses for the frequency-dependent and fifth-order approximation
models. While the difference in responses between the frequency-dependent and frequency-independent
models is clearly visible, the difference amongst the frequency-independent models is more subtle and cannot
easily be seen in time-domain response plots. Close examination lead to the conclusion that the response of
the first-order approximation does significantly deviate from higher-order approximations, the second-order
approximation is very close to higher-order approximations, and the approximations of order n ≥ 3 are
practically the same. In order to preserve clarity in the figures it was chosen to only show the fifth-order
approximation here.

The coupling of aeroelastic and flight dynamic modes is clearly observable in the pitch rate and roll rate
responses in Figure 11. Figures 12 and 13 show the excitation of respectively symmetric and asymmetric
modes at the moments corresponding to their respective doublet inputs. Examination of these figures
confirms that over- and underestimation of the modal damping in the frequency-dependent model as shown
in Figure 10 do indeed lead to respectively faster and slower settling of the corresponding mode as compared
to the fifth-order approximation model.

In order to better visualize the differences between various approximations, the frequency responses in
pitch rate and roll rate to respectively symmetric and asymmetric VCCTEF inputs were computed. These
responses are shown in Figures 15 and 16.

The flight dynamic and aeroelastic modes can easily be observed in the response plots. The modes that
are listed in Tables 4, 5, and 6 are indicated in the plots.

The frequency-dependent model is again distant from the frequency-independent models. The frequency-
independent models are close, but some variation can be observed. In order to further examine this variation
the differences of the various frequency-independent models with regard to the 5th-order model are shown
on a linear scale in Figures 17 and 18. The difference is given by

Δn(ω) =
|Fn(ω)− F5(ω)|

|F5(ω)|
(84)
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Figure 11: Flight dynamic response of ESAC to a 2× 5 s asymmetric VCCTEF doublet followed by a 2× 15
s symmetric VCCTEF doublet for frequency-dependent (FD) at ω = 9 rad/s, and fifth-order approximation
models
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Figure 12: Dynamic response first three symmetric aeroelastic modes of ESAC to a 2 × 5 s asymmetric
VCCTEF doublet followed by a 2 × 15 s symmetric VCCTEF doublet for frequency-dependent (FD) at
ω = 9 rad/s, and fifth-order approximation models
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Figure 13: Dynamic response first three asymmetric aeroelastic modes of ESAC to a 2 × 5 s asymmetric
VCCTEF doublet followed by a 2×15 s symmetric VCCTEF doublet for frequency-dependent (FD) at ω = 9
rad/s, and fifth-order approximation models
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Figure 14: VCCTEF semi-sinusoidally shaped deflection

where Fn(ω) is the complex-valued frequency response function corresponding to the nth-order approxima-
tion model.

It can now clearly be seen that the difference is indeed the largest for the first-order approximation. The
second-order approximation is much closer to the higher-order approximations. The differences for the third
and fourth-order approximations are again smaller, but the decrease is much less.

VIII. Conclusion

This paper presents a method to obtain a rational fraction approximation of Theodorsen’s function based
on mixed real and complex linear regression. Results of the regression method are shown and applied to
derive a frequency-independent state-space equation for the ESAC wing dynamic aeroelasticity by means of
aerodynamic lag states.

A comparison of several frequency-independent state-space models using different order approximations of
Theodorsen’s function, along with a frequency-dependent model, was performed. The frequency-dependent
model contains a misrepresentation of the unsteady aerodynamics at frequencies other than the preselected
frequency. This was found to result in a significantly different dynamic response of the coupled flight dynamic
and aeroelastic model, justifying the usage of additional aerodynamic lag states in order to formulate a
frequency-independent aeroelastic model.

As the order of the approximation of Theodorsen’s function increases, the accuracy of the solution
increases. However, the number of aerodynamic lag states increases as well, leading to an increased amount
of states. Hence, selection of the appropriate order of approximation is a trade-off between computational cost
and numerical issues corresponding to simulation, analysis, control design etc. of a dynamical system with
an increased number of states on one hand, and the accuracy of the unsteady aerodynamics approximation
on the other hand.

In both the frequency domain and the time-domain it was found that the second-order approximation
results in a significant increase in accuracy compared to the first-order approximation. The third-order
approximation provides another slight increase in accuracy. Approximations of order greater than three
provide minimal increase in accuracy compared to the third-order model.

It can be concluded that in case of the described ESAC model, the second-order approximation provides
a reasonable compromise between the achieved accuracy and the required number of aerodynamic lag states.
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Figure 15: Pitch rate frequency response of ESAC to a symmetric semi-sinusoidally shaped VCCTEF input
for rigid-body (RB), frequency-dependent (FD) at ω = 9 rad/s, and approximation models
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Figure 16: Roll rate frequency response of ESAC to an asymmetric semi-sinusoidally shaped VCCTEF input
for rigid-body (RB), frequency-dependent (FD) at ω = 9 rad/s, and approximation models
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Figure 17: Relative difference in pitch rate frequency response of ESAC to a symmetric semi-sinusoidally
shaped VCCTEF input for approximation models
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Figure 18: Relative difference in roll rate frequency response of ESAC to an asymmetric semi-sinusoidally
shaped VCCTEF input for approximation models
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