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This paper presents a coupled flight dynamic and aeroservoelastic model of the NASA

Generic Transport Model with increased wing flexibility and a continuous trailing edge

flap system. The continuous trailing edge flap consists of multiple segments that are con-

nected using a flexible skin material. Dynamic models of the aircraft, flexible wing, and

flap system are aerodynamically coupled. Aerodynamics of the aircraft are modeled using

a 3D vortex-lattice method. Unsteady aerodynamics of the flexible wing and flap sys-

tem are modeled using modified strip theory based on quasi-steady vortex-lattice results

and indicial concepts with unsteady aerodynamic corrections. The frequency-independent

aeroelastic state-space system is formulated by means of aerodynamic lag states. A method

for the realization of spatial turbulence and its application to flight dynamic simulation of

flexible aircraft are described. The unsteady gust responses of the elastic aircraft and the

flap system are also modeled using an indicial function approximation of the unsteady aero-

dynamic response. Compressibility effects on the unsteady aerodynamics are taken into

account throughout the modeling effort using methods by Beddoes and Leishman et al.

and a comparison is made with unsteady aerodynamics in incompressible flow. Simulation

results, including flight dynamic and elastic responses, and aerodynamic hinge moments,

are shown for flight dynamic maneuvers and gust profiles.

I. Introduction

In pursuit of energy efficient airframe designs, the aircraft industry is utilizing modern lightweight mate-
rials, such as sophisticated composites, at increasing scale. Such materials may be able to provide sufficient
load-carrying capacity at lower weight, leading to reduction of the aircraft operational empty weight (OEW).
At the same time application of these materials may lead to decreased structural rigidity. With increased
flexibility of the airframe, aeroelastic effects become more prominent and can significantly affect aircraft
performance and stability, potentially leading to degraded aerodynamic efficiency and decrease of control
surface effectiveness.

Under the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate
(ARMD), the Fixed Wing/Advanced Air Transport Technology Project is conducting multidisciplinary foun-
dational research to investigate advanced concepts and technologies for future aircraft systems. A NASA
study entitled “Elastically Shaped Future Air Vehicle Concept” was conducted in 20101,2 to examine new
concepts that can enable active control of wing aeroelasticity to achieve drag reduction. This study showed
that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing
twist and vertical deflection in order to optimize the local angle of attack of wing sections to improve aero-
dynamic efficiency through drag reduction during cruise and enhanced lift performance during take-off and
landing. For the purpose of aeroelastic shaping control, a continuous flap system called the Variable Camber
Continuous Trailing Edge Flap (VCCTEF) was introduced.
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As aircraft structures become increasingly flexible and aeroelastic effects become more prominent, a rep-
resentation of flight characteristics based on a rigid-body six degrees of freedom (6DOF) flight dynamic
model becomes inadequate. Structural dynamics of the aircraft are intimately coupled with flight dynamics
and must be accounted for in the modeling of flexible flight vehicles. Additionally, aeroservoelastic interac-
tions demand consideration in the control design. The mishap of the NASA Helios aircraft illustrates the
complex aeroservoelasticity of flexible flight vehicles.3 The need to assess flight performance and handling
qualities and the need to design and simulate flight control systems call for coupled flight dynamic and
aeroservoelastic modeling of flexible flight vehicles.

In general, the coupled equations of motion are dependent on the reduced frequency parameter. This
form is very useful for studying flutter since the reduced frequency is usually computed from a flutter
solution. However, for flight dynamic analysis, the reduced frequency dependent equation is inconvenient,
since one would not know in advance which elastic modes are excited. Random gust loads, flight dynamic
maneuvers, and high-bandwidth control may cause the excitation of multiple modes at a range of different
frequencies. A reduced frequency-dependent formulation may only be based on a single preselected frequency,
leading to misrepresentation of the aeroelastic modes acting at different frequencies. In order to address this
difficulty, a frequency-independent approach based on modified aerodynamic strip theory is used to model
the unsteady aerodynamics of the elastic wing and VCCTEF. The solution employs 2D unsteady indicial
functions combined with 3D quasi-steady vortex-lattice results. The indicial functions include unsteady
compressibility effects, in contrast to the well-known Theodorsen’s function for incompressible flow.4 This
approach permits the development of an unsteady aerodynamic model including unsteady compressibility
effects at a fraction of the computational cost of an unsteady solution obtained using Computational Fluid
Dynamics (CFD).

In addition to unsteady aerodynamics, several other aspects of coupled flight dynamic and aeroservoelastic
modeling are addressed. The VCCTEF structural model is developed and a spatial turbulence model with
corresponding unsteady aerodynamic response model is shown. Simulation results, including flight dynamic
and elastic responses, and aerodynamic hinge moments, are shown for flight dynamic maneuvers and gust
profiles.

II. Overview of Elastically Shaped Aircraft Concept and Variable Camber

Continuous Trailing Edge Flap

The Elastically Shaped Aircraft Concept (ESAC) is modeled as a notional single-aisle, mid-size, 200-
passenger aircraft. The geometry of the ESAC is obtained by scaling up the geometry of the NASA Generic
Transport Model (GTM) by a ratio of 200:11. The GTM is a research platform that includes a wind tunnel
model and a remotely piloted vehicle, as shown in Figure 1. Figure 2 is an illustration of the GTM geometry.
The reason for selecting the GTM is that there already exists an extensive wind tunnel aerodynamic database
that could be used for validation in the study. The benchmark configuration represents one of the most
common types of transport aircraft in the commercial aviation sector that provides short-to-medium range
passenger carrying capacities.

The aircraft has a take-off weight of 200,000 lbs for a typical operating load that includes cargo, fuel,
and passengers. To compute the mass and inertia properties of the benchmark aircraft, a component-based
approach is used. The aircraft is divided into the following components: fuselage, wings, horizontal tails,
vertical tail, engines, OEW equipment, and typical load including passengers, cargo, and fuel. The fuselage,
wings, horizontal tails, and vertical tail are modeled as shell structures with constant wall thicknesses. Based
on publicly available data of component weight breakdown for various aircraft,5 an average wing mass relative
to the total empty weight of the aircraft is taken to be 24.2% of the OEW.

To enable active wing shaping control, the wing structures of the ESAC are designed to increase wing
flexibility. The wing bending and torsional stiffnesses are designed to achieve a wing deflection that is about
double of that of a conventional aircraft wing. The VCCTEF consists of 15 sections attached to the outer
wing and one section attached to the inner wing, as shown in Figure 3. Each section has three camber flap
segments that can be individually commanded, as shown in Figure 4. These camber flaps are joined to the
next section by a flexible and supported material of same shape as the camber and thus providing continuous
flaps throughout the wing span with no drag producing gaps.

Using the camber positioning, a full-span, low-drag, high-lift configuration can be activated. The camber
positioning is achieved using all three flap segments. The leading two segments are actuated by means of a

2 of 32

American Institute of Aeronautics and Astronautics



Figure 1: Generic Transport Model and Remotely Piloted Vehicle at NASA Langley

Figure 2: GTM Geometry
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shape memory alloy, while the trailing edge segments are actuated using a fast electro-mechanical actuator
and can therefore also be applied for flight dynamic maneuvers and high-bandwidth control purposes, such as
flutter suppression and gust alleviation. The bandwidth of the shape memory alloy actuator is several orders
of magnitude lower than the bandwidth of the electro-mechanical actuator. Due to separation of timescales,
the modeling of the leading two segments is less relevant from a flight dynamic and aeroservoelastic point
of view, hence the model discussed in this paper only includes the dynamics of the fast-acting trailing edge
segments. The effect of the first two segments is assumed constant and can be included in the static wing
geometry.

Figure 3: GTM with VCCTEF

Figure 4: Variable Camber Flap

III. Flight Dynamics

The basis of the flight dynamic model is a nonlinear rigid-body flight dynamic model of the GTM
incorporating the well-known 6DOF nonlinear flight dynamic and kinematic equations. Stability and control
derivatives were obtained using a vortex-lattice code. Multivariate splines were fitted to the stability and
control derivatives in order to enable computationally efficient evaluation during simulation. For system
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analysis and control design purposes, it can be useful to couple the linearized flight dynamic equations to
the aeroservoelastic system. Linearization can be performed analytically or using numerical methods, such
as the finite difference method. For this study both a numerical linearization and the analytical coupled
linear flight dynamic equations of motion6 were implemented.

The coupling of aeroelasticity and rigid-body dynamics must be accounted for in order to trim the aircraft
to a steady flight condition. This is done by concurrently calculating the steady-state wing deflection and
corresponding aeroelastic forces and moments within the trim routine.

IV. Elastic Wing Dynamics

In previous work an FEM model of the elastic wing was developed.7 The model is based on an equiv-
alent beam approach and has three degrees of freedom: vertical displacement, flapwise bending, and twist.
Horizontal displacement and chordwise bending can be neglected, as the stiffness of the ESAC wing is far
greater in chordwise direction.

Inertial, propulsive, structural, and aerodynamic forces and moments are taken into account. The deriva-
tion of the aerodynamic forces and moments in the streamwise coordinate frame is based on modified strip
theory.

The local lift force and pitching moment about the aircraft y-axis along the elastic axis are expressed as

l(x) =
�

ccL(x) + cncL (x) + c
c,δ
L (x) + c

nc,δ
L (x)

�

q∞ cosΛc(x) (1)

m(x) =
�

ccm(x) + cncm (x) + cc,δm (x) + cnc,δm (x)
�

q∞ cosΛc(x)2 (2)

where the superscripts c and nc indicate respectively circulatory and noncirculatory contributions by the
aircraft rigid body and the elastic wing, and the superscripts c, δ and nc, δ indicate respectively circulatory
and noncirculatory contributions by the VCCTEF. These are not only a function of the flap angles δ, but
also depend on their derivatives, as shown in Section V.

The noncirculatory contributions result from the change in momentum of surrounding air due to the
motion of the airfoil and flap. Also due to the airfoil and flap motion, the circulation in the bound vortex
changes and by Kelvin’s circulation theorem, an equal but opposite amount of circulation is added to the
wake vortex. The increment in wake circulation induces a velocity increment at the airfoil, resulting in a
phase lag and decrease in magnitude of the circulatory lift relative to the steady-state value for the same
angle of attack.

For incompressible flow, an expression for the effect of phase lag and decrease in magnitude as a function
of the reduced frequency k of a harmonically oscillating airfoil is given by Theodorsen’s function4

C(k) = F (k) + iG(k) (3)

where F (k) ≥ 0.5, G(k) ≤ 0, and

k =
ωc

2V
(4)

with ω the oscillation frequency, c the airfoil chord, and V the free stream airspeed. The functions F (k)
and G(k) are analytically defined in terms of Bessel functions.4 Existing work extends the application of
Theodorsen’s function to airfoils in arbitrary motion.8,9

The time-domain equivalent of Theodorsen’s function is given by Wagner’s indicial function,10 which gives
the lift response to a step change in angle of attack and forms a Fourier transform pair with Theodorsen’s
function. Wagner’s function is also analytically defined and expressed in terms of Bessel functions. In case
of arbitrary airfoil motion, such as in flight dynamic simulations, it can be applied to calculate forces and
moments by virtue of Duhamel’s integral.

Function approximations are often resorted to for practical application of Theodorsen’s or Wagner’s
function. Rational fraction approximations may be used in case of Theodorsen’s function in the frequency-
domain11,12 and exponential time-domain approximations in case of Wagner’s function. The most well-known
of these exponential approximations is given by R.T. Jones,13 namely

φ(S) = 1− 0.165e−0.0455S − 0.335e−0.3S (5)
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where S = 2V
c t is the distance traveled in semichords, after the step angle of attack change. The second-order

approximation is able to capture the dynamics of Wagner’s and Theodorsen’s functions quite well. Increasing
the order of approximation will generally increase accuracy, up to third-order beyond which accuracy gains
are diminishing.12 A major benefit of the exponential approximation is that its state-space representation
can be realized straightforwardly.

As mentioned above, Theodorsen’s function is valid only under the assumption of incompressible flow.
Naturally, the same is the case for Wagner’s function. A compressibility scaling, e.g. by the inverse Prandtl-
Glauert factor, does not apply to the transient circulatory force and moment responses in unsteady aerody-
namic conditions. Steady-state values are reached at a later time in the compressible case, as compared to
the incompressible case.14

For incompressible flow, the noncirculatory force and moment contributions due to apparent mass are
instant and not subject to a time-history effect.4 This is not applicable to compressible flow as the speed of
sound is now considered finite and pressure disturbances are not felt instantly.14 Instead, the noncirculatory
forces and moments are subject to a time-history effect, similar to their circulatory counterparts.

Modeling of compressible unsteady aerodynamics is generally more complicated and there are no ana-
lytical solutions, such as for the incompressible case.15 Analytic indicial lift and moment functions can only
be derived for a small time range following an angle of attack or pitch rate step input. In order to do so
Lomax utilizes the analogy between a two-dimensional wing in unsteady motion and a three-dimensional
lifting surface in steady motion.16 Asymptotic steady-state values are not yet approached at the end of this
range. Hence, an expression for the intermediate behavior remains to be found. This problem has been
approached in several ways, e.g. using experimental data17 and using computational methods.18

Beddoes proposes a method of describing the unsteady compressible forces and moments by approxima-
tions based on a combination of numerical and analytical solutions. An exponential form is assumed, similar
to the form of R.T. Jones’ approximation for circulatory lift.

For noncirculatory lift, an approximation by a decreasing function consisting of a single exponential
term is assumed. This form can approach the time-dependent behavior of solutions for the noncirculatory
lift component, such as those based on the acoustic approximation,19 quite well. From a flight dynamic
modeling point of view, the exponential approximation is much more convenient than the solution of the
acoustic approximation, which is formulated in terms of Mathieu functions.

Beddoes makes use of the analytical solution for the initial part of the response as derived by Lomax16

in order to determine the time constant of the noncirculatory lift approximation. The time derivative of the
analytical total lift function at S = 0 is equated to the sum of the time derivatives of the approximations for
the circulatory and noncirculatory lift contributions. The method has been applied and further developed
by Leishman and Nguyen20 and was validated using experimental data.21 Using a combination of linear
unsteady theory and aerodynamic reverse-flow theorems, similar approximations for a flapped airfoil were
also developed.22 A convenient overview of approximations with state-space realizations is given by Leishman
and Nguyen,20 and by Hariharan and Leishman.22 These approximations are applied in the present study.
An overview is given below.

A. Aerodynamic Forces and Moments due to Elastic Wing

The aerodynamic forces and moments on the elastic wing due to aircraft geometry, static and dynamic
deformations and deformation rates of the elastic wing, and aircraft rigid-body orientation and motion are
calculated using the notion of a local aeroelastic angle of attack. This angle of attack is a measure of the total
local upwash relative to the wing section and includes contributions by all of the aforementioned states.7

The sectional unsteady aerodynamic lift force and pitching moment consist of circulatory and noncircula-
tory contributions. Aerodynamic lag states are applied in order to model the time-dependent effects of these
contributions. The aerodynamic lag states are driven by the local aeroelastic angle of attack and the local
(sectional) pitch rate. As mentioned above, the local angle of attack and local pitch rate generally include
contributions by both the rigid body and elastic wing orientation and motion. However, for the purpose of
coupling the elastic wing to the nonlinear rigid-body dynamics in the current study it is necessary to separate
rigid-body and elastic wing contributions. Hence, the rigid-body contribution is assumed quasi-steady and
not incorporated in the aerodynamic lag states. This assumption is admissible due to the relatively low
frequency of the rigid-body dynamics.

Eight aerodynamic lag states are required to model the 2D circulatory and noncirculatory lift force and
pitching moment due to the elastic wing. Consequently, the total number of aerodynamic lag states in the
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full-order model is equal to ten times the number of aerodynamic strips. The aerodynamic lag state dynamics
are given below.

Where available the circulatory force and moment derivatives with regard to the aeroelastic angle of
attack are taken from a quasi-steady vortex-lattice code. These values are indicated by the superscript QS.

The aerodynamic lag state dynamics are based on indicial response functions that model the lift and
pitching moment response due to a step angle input, similar to Wagner’s function for incompressible flow,
or a step pitch rate input. The motion of the wing section is described in terms of the angle of attack at the
quarter chord point, α1/4, and the pitch rate at the same point and normalized by c

V , q1/4. Together these
parameters can be used to describe any chordwise linear upwash profile due to pitch and plunge motion of
the wing section. The upwash at the quarter chord point is determined by α1/4 and any chordwise linear
variation by q1/4.

The indicial functions consist of exponential terms, hence a state-space realization can easily be derived.
The circulatory lift response to a unit angle of attack step input is given by

ccL = c
QS
Lα

α3/4

�

1− a1e
−b1β

2S − a2e
−b2β

2S
�

(6)

where a1 = 0.3, a2 = 0.7, b1 = 0.14 and b2 = 0.53 as given by Beddoes,18 β =
√
1−M2 is the Prandtl-

Glauert correction factor, and c
QS
Lα

is the quasi-steady lift slope obtained from vortex-lattice calculations.
The angle of attack at the three quarter chord location, α3/4, is given by

α3/4 = α1/4 +
q1/4

2
(7)

By examination of equation (6) similarity to the form of R.T. Jones’ approximation, equation (5), can
easily be observed. It can also be seen that ccL asymptotically approaches its quasi-steady value if α3/4 is
constant. Similar to Theodorsen’s expression, the circulatory lift is dependent on the angle of attack at the
three quarter chord point.

The state-space equivalent of equation (6) is realized using two aerodynamic lag states. The resulting
system of differential equations is given by

ẋ1 = −
�

2V

c

�

β2b1x1 + α3/4 (8)

ẋ2 = −
�

2V

c

�

β2b2x2 + α3/4 (9)

where c is the local chord length. The local circulatory lift coefficient due to elastic wing deformation is then
given by

ccL = c
QS
Lα

�

2V

c

�

β2 (a1b1x1 + a2b2x2) (10)

For brevity purposes, the exponential forms of the remaining indicial functions for noncirculatory lift,
and noncirculatory and circulatory pitching moment are not given here. They can however straightforwardly
be derived from the shown state-space realizations or found in references.20,22

For the noncirculatory lift due to angle of attack, a single lag state is used

ẋ3 = − 1

KαTI
x3 + α1/4 (11)

where TI = c
a with a the speed of sound and Kα is to be determined in the subsequent analysis. The

corresponding output equation is given by

c
nc,α
L =

4

M
ẋ3 (12)

The speed of sound is considered infinite in incompressible flow, leading to TI = 0. This effectively removes
the time-dependent effect in equation (11). Concurrently, the Mach number is considered zero, consequently
equation (12) becomes unbounded. The outcome is an instantaneous, unbounded, impulse-shaped noncircu-
latory lift output at S = 0 due to an angle of attack step input in incompressible flow. This corresponds to
Theodorsen’s formulation, where the noncirculatory lift due to an angle of attack step input is proportional
to the time-derivative of the step input function, i.e. the Dirac delta function.
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The time constant Kα is found by equating the time derivatives of the analytical and approximate
solutions for a unit step angle of attack input at S = 0

dcαL(0)

dS
=

dccL(0)

dS
+

dcnc,αL (0)

dS
(13)

Note that

dS =
2V

c
dt (14)

so that from equations (8), (9), and (10)

dccL(0)

dS
= c

QS
Lα

β2(a1b1 + a2b2) (15)

and from equations (11) and (12)
dcnc,αL (0)

dS
=

−4

MKαTI

c

2V
(16)

From the analytical solution16 it is known that

dcαL(0)

dS
=

−2 (1−M)

M2
(17)

By equating the time derivatives the expression for Kα can now be found

Kα =
2

2 (1−M) + c
QS
Lα

β2M2 (a1b1 + a2b2)
(18)

In order to achieve agreement with test data, the noncirculatory time constants must sometimes be adapted
from their theoretical values.20,21 In the current study, the values were kept as followed from their respective
derivations shown here.

The noncirculatory lift due to pitch rate at the quarter chord point is given by

ẋ4 = − 1

KqTI
x4 + q1/4 (19)

and

c
nc,q
L =

1

M
ẋ4 (20)

The time constant Kq is found in a similar manner as Kα, and is defined as

Kq =
1

(1−M) + c
QS
Lα

β2M2 (a1b1 + a2b2)
(21)

The pitching moment coefficient is taken about the quarter chord point. This is done in order to maintain
the notations as used by Beddoes,18 and Leishman and Nguyen.20 The pitching moment about the quarter
chord is primed to distinguish it from the pitching moment coefficient about the elastic axis location in
equation (2).

It should be noted that the formulation of lift and pitching moment as a function of the angle of attack
and pitch rate at the quarter chord point does not intrinsically lead to incompatibility with the formulation
by Theodorsen. The instantaneous noncirculatory lift, for example, is based on the angle of attack at the
mid-chord point in Theodorsen’s formulation. Examination of the ratio of the output coefficients of equations
(12) and (20) shows that the total instantaneous noncirculatory lift is again a function of the angle of attack
at the mid-chord point, even though it consists of two separate contributions in the compressible formulation.

The circulatory pitching moment about the sectional quarter chord point due to angle of attack can be
calculated from the circulatory lift and is given by

cc,αm ′ = ccL

�

1

4
− xac

�

(22)

where xac is the distance of the aerodynamic center from the leading edge measured in chord lengths.
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The noncirculatory pitching moment due to angle of attack is given by21

ẋ5 =− (b3KαM
TI)

−1
x5 + α1/4 (23)

ẋ6 =− (b4KαM
TI)

−1
x6 + α1/4 (24)

and

cnc,αm ′ = − 1

M

�

−a3 (b3KαM
TI)

−1
x5 − a4 (b4KαM

TI)
−1

x6

�

− 1

M
α1/4 (25)

where a3 = 1.5, a4 = −0.5, b3 = 0.25, b4 = 0.1, and the noncirculatory time constant

Kαm
=

a3b4 + a4b3

b3b4 (1−M)
(26)

The two remaining contributions are the circulatory and noncirculatory pitching moment due to pitch
rate about the quarter chord point. The circulatory contribution is approximated by20

ẋ7 = −b5β
2
2V

c
x7 + q1/4 (27)

and

cc,qm ′ = − π

16
β
2V

c
x7 (28)

where b5 = 0.5. The noncirculatory contribution is approximated by20

ẋ8 = − 1

KqMTI
x8 + q1/4 (29)

and

cnc,qm ′ = − 7

12M
ẋ8 (30)

where the time constant is given by20

Kqm =
7

15 (1−M) + 3πβM2b5
(31)

The total lift and pitching moment can now be obtained by summation of contributions:

ccL =ccL (32)

cncL =c
nc,α
L + c

nc,q
L (33)

ccm′ =cc,αm ′+ cc,qm ′ (34)

cncm ′ =cnc,αm ′+ cnc,qm ′ (35)

The pitching moment about the aircraft y-axis at the elastic axis location is given by

ccm =ccm′+ eccL (36)

cncm =cncm ′+ ecncL (37)

where e is the distance of the elastic center back from the quarter chord point measured in chord lengths.

B. Comparison to Incompressible Unsteady Aerodynamics

In order to compare the circulatory lift due to the angle of attack at the three quarter chord point, equation
(6) is transformed to the frequency domain. The resulting frequency response function for Mach 0.797 is
shown in Figure 5 along with Theodorsen’s function, equation (3). Both functions are normalized using the
steady-state value.
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Figure 5: Circulatory lift due to harmonic variation of angle of attack at three quarter chord point

A major difference can immediately be observed at high frequencies, where the lift in compressible flow
is zero, while the lift in incompressible flow has a magnitude of -6 dB (half of its steady-state value). This
can also be observed when comparing equations (5) and (6) at S = 0. The initial value of zero for S = 0 in
(6) is in agreement with the analytical compressible flow solution for small values of S by Lomax.16

In order to gain further insight in the differences between the expressions from the previous section
and the results obtained by Theodorsen for the incompressible case, both are applied to a two-dimensional
2DOF wing profile. The wing profile has pitch and plunge degrees of freedom. Its aerodynamic and structural
properties are equivalent to the sectional properties of the ESAC wing at two thirds of its span. The equations
of motion are given by

mḧ+ Sθ θ̈ +Khh = −L (38)

Sθḧ+ Iθ θ̈ +Kθθ = M (39)

where m is the mass Iθ is the rotational inertia, and Kh and Kθ are vertical and rotational stiffness,
respectively. The static mass moment, Sθ, accounts for the offset between elastic axis and center of gravity.
The aerodynamic lift force, positive upward, is indicated by L and the pitching moment by M . The degrees
of freedom are defined in Figure 6. Note that no structural damping is added to the 2DOF model. This is
also the case for the ESAC model.

Using the expressions by Theodorsen,4 the lift and pitching moment coefficients of an oscillating airfoil
with two degrees of freedom can be formulated as

cL =
c

2V

�

πθ̇ + π
ḧ

V
− πa

c

2V
θ̈

�

+ c
QS
Lα

C(k)α3/4 (40)

cm =− c

4V

�

π

�

1

2
− a

�

θ̇ + π
c

2V

�

1

8
+ a2

�

θ̈ − aπ
ḧ

V

�

+
1

2
c
QS
Lα

�

1

2
+ a

�

C(k)α3/4 (41)

where a is defined in Figure 6. The function C(k) is Theodorsen’s function. The quasi-steady lift slope c
QS
Lα

includes a compressibility correction using the Prandtl-Glauert factor.
The 2DOF section has two oscillatory modes: pitch and plunge. The structural frequencies of these modes

vary with the appropriate stiffness and mass or inertia terms. As can be seen in Figure 5, the aerodynamic
forces greatly depend on the frequency of the airfoil motion. In order to examine the aerodynamic damping
at various frequencies, the stiffness terms, Kh and Kθ, were separately decreased from their original values
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Figure 6: Schematic overview of airfoil

down to the point were the aeroelastic system becomes unstable. The resulting root locus plots are shown
in Figure 7.
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Figure 7: Root locus of oscillatory modes with varying stiffness for incompressible unsteady aerodynamics
with Prandtl-Glauert correction and compressible aerodynamics at Mach 0.797

In Figure 7a, the aerodynamic damping of the plunge mode can be seen. At low frequencies the aero-
dynamic damping is much lower in the compressible case. As the frequency increases, the compressible
aerodynamic damping increases and at high frequencies it exceeds the incompressible aerodynamic damping.
The aerodynamic damping of the pitch mode is lower in the compressible case at all frequencies, as can be
seen in Figure 7b. Overall the aerodynamic damping is larger in the compressible formulation, except for
the plunge mode at low frequencies. This observation is not necessarily general for any plunge mode because
of the intricate interaction between pitch and plunge motions.

V. VCCTEF Dynamics

A dynamic model governing the motion of the fast acting trailing edge flaps of the VCCTEF is developed
and is coupled to the flight dynamic and aeroelastic model to establish an aeroservoelastic flight dynamic
model.
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A. Structural Dynamics

The dynamic model includes structural inertia and damping properties of the 16 control surfaces on each
wing, as well as stiffness properties of the elastomer skin that is applied between the upper and lower surfaces
of the flaps, as shown in Figure 3. Structural inertia and damping were estimated using data obtained from
a model of the VCCTEF that is developed by Boeing.23

Stretching of the elastomer due to the relative deflection of adjacent flaps, Δδ, makes it act as a nonlinear
spring. The relative deflection is limited to magnitudes less than or equal to 2 deg in order to avoid the
formation of drag inducing discontinuities and to prevent structural damage to the flap system. It can
therefore be assumed that the stretching of the elastomer is limited to the linearly elastic domain and
adheres to Hooke’s Law

ǫ =
σ

E
(42)

where ǫ is the strain, σ is the tensile stress, and E is the elastic modulus of the elastomer, which is assumed to
be constant. Furthermore, it is assumed that the shear stress carried by the thin elastomer skin is negligible.

The elastomer is installed under some tension σ0 in order to prevent it from flapping if Δδ = 0. The
corresponding tensile force is given by

T0dx = σ0tdx (43)

where t is the thickness of the elastomer skin and dx an infinitesimally narrow slice perpendicular to the
chordwise coordinate x, as shown in Figure 8.

b

x

a

��

t

Figure 8: Elastomer material between adjacent VCCTEF sections

b

���x
�

� �

Figure 9: Trailing edge view of upper elastomer material between adjacent VCCTEF sections

A relative deflection Δδ, assumed small, leads to an additional elastomer strain Δǫ given by

Δǫ (x) =

�

(xΔδ)
2
+ b2 − b

b
=

1

b

�

(xΔδ)
2
+ b2 − 1 (44)

where b is the elastomer width and x indicates chordwise location. The resulting additional tensile force is
given by

ΔT dx = tEΔǫ (x) dx (45)

and the total tensile force by
T dx = (T0 +ΔT ) dx (46)
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Only the tensile force component perpendicular to the flap hinge line will contribute to the hinge moment.
As shown in Figure 9, this component is given by

T⊥ dx =
xΔδ

�

(xΔδ)
2
+ b2

T dx (47)

The total hinge moment can now be found by integrating the product of the perpendicular tensile force
component and its moment arm. The factor 2 is introduced to account for both the upper and lower
elastomer material.

M =2

a
�

0

x
xΔδ

�

(xΔδ)
2
+ b2

�

σ0t− tE +
tE

b

�

(xΔδ)
2
+ b2

�

dx (48)

=2

a
�

0

(σ0t− tE)Δδ
x2

�

(xΔδ)
2
+ b2

dx+ 2

a
�

0

tE

b
x2Δδ dx (49)

=2
(σ0t− tE)

2Δδ2

�

aΔδ

�

(xΔδ)
2
+ b2 − b2 log

�

aΔδ +

�

(xΔδ)
2
+ b2

�

− b2 log(b)

�

+ 2
tE

3b
a3Δδ (50)

This nonlinear moment equation can be approximated using a Taylor series. The first three terms of this
series are given by

M =
2tσ0a

3

3b
Δδ − t (σ0 − E) a5

5b3
Δδ3 +

3t (σ0 − E) a7

28b5
Δδ5 + ... (51)

It can be seen that the first term is linear in the pre-tension σ0 and zero if σ0 = 0. The geometric
parameters a and b are a function of the flap lay-out and can be taken from Figure 3. The values of tE and
tσ0 were estimated by fitting the moment equation to notional data.23 The resulting Taylor approximations
of various orders can be seen in Figure 10 along with the analytical solution as given in equation (50). The
data in the figure corresponds to the outer wing flaps. It can be observed that the third-order Taylor series
is able to approximate equation (50) very well within the relevant domain −2 deg ≤ Δδ ≤ 2 deg. It was
therefore chosen to model the elastomer material as a torsion spring with linear and cubic terms.
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Figure 10: Hinge moment due to elastomer stretching by nonzero relative deflection of adjacent VCCTEF
segments
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B. Aerodynamic Forces and Moments due to VCCTEF

The VCCTEF is attached to the flexible wing and hence creates aerodynamic forces and moments that
can directly excite the elastic modes of the wing. The unsteady circulatory and noncirculatory forces and
moments are time-dependent, like the unsteady aerodynamics of the elastic wing. Indicial function approx-
imations for a flapped airfoil were developed by Hariharan and Leishman, using a combination of linear
unsteady theory and aerodynamic reverse-flow theorems.22 The corresponding aerodynamic lag states z1 to
z10 are numbered such that the notation of Hariharan and Leishman is maintained.22 Again, quasi-steady
vortex-lattice results are indicated by the superscript QS.

The sectional circulatory lift is given by

ż1 =z2 (52)

ż2 =− b
f
1
b
f
2

�

2V

c

�2

β4z1 −
�

b
f
1
+ b

f
2

� 2V

c
β2z2 + δqs (53)

and

c
c,δ
L = c

QS
Lδ

�

b
f
1
b
f
2

�

2V

c

�2

β4z1 +
�

a
f
1
b
f
1
+ a

f
2
b
f
2

� 2V

c
β2z2

�

(54)

where b
f
1
= 0.366, bf

2
= 0.102, af

1
= 0.918, af

2
= 0.082,22 and

δqs = δ +
1

2

c

2V

T11

T10

δ̇ (55)

with the T· geometric coefficients as defined in Appendix A, and δ and δ̇ the local flap deflection angle
and deflection rate, respectively. Note that δqs is defined such that c

c,δ
L = c

QS
Lδ

δ in case of a constant flap

deflection. This definition differs somewhat from the one used by Hariharan and Leishman,22 but the ratio
of the δ and δ̇ contributions is maintained.

Dynamics of the sectional noncirculatory lift are represented by two aerodynamic lag states, as

ż5 =− 1

KLδ
TI

z5 + δ (56)

ż8 =− 1

KL
δ̇
TI

z8 +
c

V
δ̇ (57)

with the time constants KLδ
and KL

δ̇
as given in Appendix B. The noncirculatory lift is then given by

c
nc,δ
L = ΔcLδ

ż5 +ΔcL
δ̇
ż8 (58)

with ΔcLδ
and ΔcL

δ̇
as given in Appendix C. Equations (56), (57), and (58) are written in the same form

as by Hariharan and Leishman.22 It may seem as if the noncirculatory lift is a function of flap angle and
angular speed, due to the formulation of equations (56) and (57) as a function of δ and δ̇. However, since ż5
and ż8 go to zero for constant values of respectively δ and δ̇, the noncirculatory lift is actually a function of
flap angular speed and angular acceleration. This dependency is also present in the incompressible solution
by Theodorsen4 and can be made evident by differentiating equations (56) and (57) with regard to time:

z̈5 =− 1

KLδ
TI

ż5 + δ̇ (59)

z̈8 =− 1

KL
δ̇
TI

ż8 +
c

V
δ̈ (60)

This can be rewritten using the substitutions z̄5 = ż5 and z̄8 = ż8, as

˙̄z5 =− 1

KLδ
TI

z̄5 + δ̇ (61)

˙̄z8 =− 1

KL
δ̇
TI

z̄8 +
c

V
δ̈ (62)
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The noncirculatory lift is then given by

c
nc,δ
L = ΔcLδ

z̄5 +ΔcL
δ̇
z̄8 (63)

Similar reformulations can also be done for subsequent expressions of the same form for the noncirculatory
pitching and hinge moments.

The circulatory moment about the elastic axis location is given by

ż3 = −2V

c
b
f
3
β2z3 + δqsm (64)

and

cc,δm = cQS
mδ

2V

c
b
f
3
β2z3 (65)

where b
f
3
= 1.5 as given by Hariharan and Leishman,22 and

δqsm = δ +
2T1 − 2T8 − (2f + 1)T4 + T11

2T4 + 2T10

c

2V
δ̇ (66)

with f as defined in Figure 11. The definition of δqsm differs somewhat from the one used by Hariharan

and Leishman,22 but the ratio of the δ and δ̇ contributions is maintained. Since the quasi-steady moment
coefficient cQS

mδ
corresponds to the moment about the elastic axis location, a translation, such as given by

equation (36), is not necessary. It is assumed that the transient behavior of the circulatory moment about
the elastic axis location is proportional to that of the circulatory moment about the quarter chord point.

Elastic axis
Mid-chord point

f

�

c
2

Hinge axis

Figure 11: Schematic overview of airfoil with flap

The time-dependent behavior of the noncirculatory moment about the quarter chord point is modeled
by two aerodynamic lag states,22 as

ż6 =− 1

Kmδ
TI

z6 + δ (67)

ż9 =− 1

Km
δ̇
TI

z9 +
c

V
δ̇ (68)

with the time constants Kmδ
and Km

δ̇
as given in Appendix B. The corresponding output equation is

cnc,δm ′ = Δcmδ
ż6 +Δcm

δ̇
ż9 (69)

with Δcmδ
and Δcm

δ̇
as given in Appendix C. The noncirculatory moment about the elastic axis can be

calculated analogous to the manner shown in equation (37).
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C. Aerodynamic Hinge Moment due to Rigid Body and Elastic Wing

The aerodynamic hinge moment due to rigid body and elastic wing involves integration of the pressure
distribution on the flap. However, reverse-flow theorems apply only to total forces and moments on the
airfoil.22 Instead, the incompressible circulatory hinge moment coefficient as derived by Theodorsen4 was
corrected using the Prandt-Glauert factor in order to model the hinge moment due to the rigid body and
elastic wing. The rigid-body contribution is assumed quasi-steady. For the elastic wing contribution it was
assumed that the transient behavior is proportional to that of the unsteady circulatory lift and moment.
The circulatory hinge moment coefficient due to the elastic wing is thus given by

ceh = −1

2

T12

β

2V

c
β2 (a1b1x1 + a2b2x2) (70)

with x1 and x2 as given in equations (8) and (9), respectively.

D. Aerodynamic Hinge Moment due to VCCTEF

The aerodynamic hinge moment due to VCCTEF is the self-induced hinge moment due to the flap deflection
and deflection rate. It includes circulatory and noncirculatory contributions. Hariharan and Leishman22

assume that the hinge moment is equal to the total moment on the airfoil at the instant of the flap deflection
in order to be able to utilize results from reverse-flow theorems.

The circulatory hinge moment due to flap deflection is given by Hariharan and Leishman22 as

ż4 = −2V

c
b
f
3
β2z4 + δqsh (71)

and its corresponding output equation

c
c,δ
h = c

QS
hδ

2V

c
b
f
3
β2z4 (72)

where

δqsh = δ +
T11 (T12 − 2T4)

T5 − T4T10 + T12T10

c

2V
δ̇ (73)

The definition of δqsm is adapted such that the ratio of the δ and δ̇ contributions is maintained.
The time-dependent behavior of the noncirculatory hinge moment is modeled by two aerodynamic lag

states,22 as

ż7 =− 1

Khδ
TI

z7 + δ (74)

ż10 =− 1

Kh
δ̇
TI

z10 +
c

V
δ̇ (75)

with the time constants Khδ
and Kh

δ̇
as given in Appendix B. The corresponding output equation is

c
nc,δ
h = Δchδ

ż7 +Δch
δ̇
ż10 (76)

with Δchδ
and Δch

δ̇
as given by in Appendix C.

E. Actuator Model

A direct current electric torque motor model forms the basis of the actuator model:

LṀm +RMm =(V − Vb)Km (77)

Vb =Kbδ̇ (78)

where Mm is the electric torque motor hinge moment, V is the input voltage, Vb is the back voltage, Km is
the torque to current ratio, Kb is the back EMF constant, L is the inductance, and R is the resistance. The
input voltage is set using a PID-controller with the commanded flap deflection as its input:

V = KP (δc − δ) +KI

�

(δc − δ) dt−KD δ̇ (79)
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VI. Turbulence Model

For the purpose of simulation of the flight dynamic and aeroelastic response to atmospheric disturbances,
a turbulence model was devised. The model is also relevant for the design and evaluation of flight control
laws that include gust load alleviation and flutter suppression.

A. 2D Von Karman Turbulence Generation

For simulations of atmospheric flight dynamics of rigid-body vehicles, turbulence models that include velocity
components as well as rotational rates are often used. Examples include the linear field approximation and
Etkin’s four-point model.24 While these models include information on the local turbulence velocity and its
spatial gradients, a complete spatial turbulence description is not included.

The aeroelastic response of an aircraft is strongly dependent on the lift distribution and therefore on
the local angle of attack along the wing. The angle of attack in turn is a function of the local turbulence
velocity. Therefore a spatial turbulence description that varies longitudinally and laterally is necessary to
obtain a realistic aeroelastic response of the aircraft. The spatial dependence of the turbulence is illustrated
in Figure 12.

(a) 1D Von Karman Turbulence Field (b) 2D Von Karman Turbulence Field

Figure 12: Illustration of 1D and 2D Turbulence

In order to simplify the turbulence description, several assumptions are made. The turbulence is assumed
to be a homogeneous, stationary, and Gaussian random process. Furthermore, only vertical turbulence speed
is considered, since it has the strongest effect on the twist, flapwise bending, and vertical displacement of
the wing. Together with the assumption that the vertical component of the flight path is negligible, this
leads to a two-dimensional isentropic turbulence field. Consequently, the turbulence is also ergodic. A final
assumption is made by neglecting the evolution of the turbulence field as a function of time, thus seeing it
as a spatial field that is frozen in time. This is known as Taylor’s frozen field hypothesis.25

Within this framework of assumptions different turbulence models, defined by their correlation or spectra
functions, can be utilized. Two of the most common ones being the Dryden and Von Karman spectra. For
high frequencies the Von Karman spectrum has a roll-off proportional to Ω−

5

3 , where Ω is the spatial
frequency, satisfying the Kolmogorov law.26 Its spectral power at high frequencies exceeds the Dryden
spectrum, which has a roll-off proportional to Ω−2. The larger presence of high frequency turbulence in
the Von Karman model increases its realism.27 This is especially relevant for simulations of aeroelastic
phenomena, which generally occur at higher frequencies than flight dynamic responses.

The most widespread method to obtain one-dimensional turbulence signals is filtering of a white noise
signal. One of the advantages of one-dimensional Dryden turbulence is the fact that it is based on a rational
spectrum and can thus be generated using a difference equation that can easily be obtained from the spectrum
or correlation function. Von Karman turbulence, on the other hand, is described by an irrational spectrum
and thus requires an approximate difference equation. While various approximations of different orders exist,
a high-order approximation is required to be able to correctly represent high-frequency spectral content.28

For the current application of generating two-dimensional turbulence fields, this disadvantage of the Von
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Karman turbulence spectrum is however not relevant, since it is not possible to obtain difference equations
for multi-dimensional functions of inseparable variables. For the current study the Von Karman spectrum
was selected.

For generation of the two-dimensional turbulence field, a method based on convolution or the Fourier
transform has to be used. In this case the latter is selected. The method, based on existing work,26,27 is
outlined below.

The Von Karman energy spectrum function is given by

E(ν) =
110

9
σ2L

(2πaLν)
4

�

1 + (2πaLν)
2

�17/6
(80)

where ν =
�

ν2
1
+ ν2

2
+ ν2

3

�1/2
is the norm of the spatial frequency components, a is a constant equal to 1.339,

σ2 is the turbulence variance, and L is its length scale. The corresponding autospectrum is given by

Φii (ν1, ν2, ν3) =
440π3

9

σ2a4L5
�

ν2 − ν2i
�

�

1 + (2πaLν)
2

�17/6
(81)

The two-dimensional spectra can now be obtained by the integral

Ψij (ν1, ν2) =

∞
�

−∞

Φij (ν1, ν2, ν3) dν3 (82)

The resulting two-dimensional vertical turbulence spectrum is

Ψ33 (ν1, ν2) =
64π3

9
σ2 (aL)

4 ν2
1
+ ν2

2

�

1 + (2πaL)
2
(ν2

1
+ ν2

2
)
�7/3

(83)

In order to obtain the turbulence field corresponding to equation (83), Gaussian white noise is multiplied
with the relevant shaping function in the frequency domain and subsequently transformed to the spatial
domain using the two-dimensional Inverse Fast Fourier Transform (IFFT). Gaussian white noise can be
generated in the spatial domain and transformed to the frequency domain using the two-dimensional Fast
Fourier Transform (FFT). However, in order to reduce computational effort it can also be generated directly
in the frequency domain, using the Hermitian symmetry properties of the FFT of a real-valued signal.27

The spectral density of the output signal of a linear filter is given by

Φw (ν) = |H(ν)|2 Φn(ν) (84)

where H(ν) is the frequency response function of the filter, Φw (ν) is the desired turbulence spectrum, as
given by equation (83). If Φn(ν) is the spectrum of Gaussian white noise with unity variance, the solution
for the frequency response function of the required filter is given by

H(ν1, ν2) =
�

νs1νs2Ψ33 (ν1, ν2)e
jα(ν1,ν2) (85)

where α(ν1, ν2) is an arbitrary phase function, which can be set to zero. Note the correction due to the effect
of the sampling frequency of the white noise with unity variance.

The spatial sampling frequencies are set using the aircraft speed and time step in the longitudinal direc-
tion, and using the strip theory discretization in the lateral direction:

νs1 =
1

VΔt
(86)

νs2 =
1

Δy
(87)

After frequency domain multiplication and subsequent IFFT a spatial turbulence field is obtained. Ver-
tical speeds at the required positions are obtained using cubic interpolation. An example of a Von Karman
realization is shown in Figure 13.
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Figure 13: Von Karman vertical turbulence field with L = 2500 ft and σ = 4.7 ft/s

B. Gust Field Generation

In addition to stochastic turbulence from the Von Karman turbulence model, deterministic gust fields can
also be useful for evaluation of flight performance and controller design. Consecutive 1 − cos gusts at
preselected frequency and specific location can be used to excite particular flight dynamic or aeroelastic
modes. A high-frequency gust field below the wing can for example be used to excite aeroelastic bending
modes as will be shown later. Other available gust fields include the sharp-edged gust and the canyon gust,
which has a sharp increase and decreases linearly.

C. Aerodynamic Forces and Moments due to Turbulence and Gusts

The turbulence and gust field expressions described above can be used to determine the local vertical tur-
bulence speed at locations on the rigid fuselage and horizontal tail plane, and on the elastic wing. The
aerodynamic forces and moments due to the vertical turbulence are subject to time-dependent effects. In
case of incompressible flow, the indicial lift function of an airfoil penetrating a sharp-edged gust is given by
Küssner’s unsteady gust response function.29 For practical purposes, Küssner’s function is often approxi-
mated15 as

ψg(S) = 1− 0.5e−0.130S − 0.5e−S (88)

Similar indicial functions for subsonic flow are given by Leishman.30 Functions based on both linear
theory and CFD are given. For the current study, the following function, based on linear theory, is used:

ψg(S,M) = 1−G1e
−g1β

2S −G2e
−g2β

2S = 1− 0.527e−0.100β2S − 0.473e−1.367β2S (89)

The difference between equations (88) and (89) can clearly be observed in Figure 14. The indicial response
in compressible flow is decreased relative to Küssner’s function. Hence calculation of gust loads based on
Küssner’s function may lead to overestimation of such loads, but is conservative for design purposes.

By virtue of Duhamel’s integral, the compressible indicial function can be applied to a random gust input
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and the output equation

αg = g1g2

�

2V

c

�2

β4x
g
1
+ (G1g1 +G2g2)

�

2V

c

�

β2x
g
2

(92)

with αg the local effective angle of attack due to the vertical gust.
The circulatory lift and moment contributions towards the rigid-body flight dynamics, elastic wing dy-

namics and VCCTEF flap dynamics are calculated using αg and the their steady-state values, as described
in preceding sections. It should be noted that wg in equation (91) corresponds to the vertical gust speed at
the section leading edge. A transport delay must thus be applied to account for planform geometry. Ensuing
gust penetration at the leading edge, the point at which lift acts quickly moves aft.15 It is therefore assumed
that the lift acts at its steady-state location throughout the maneuver.

VII. Flight Dynamic and Aeroservoelastic Coupling

The aerodynamic coefficients CL, CD, Cy, Cl, Cm, and Cn are a function of the aeroelastic deflections of
the aircraft wings as shown in Section IV. Therefore, the flight dynamic equations of motion of the aircraft
are coupled with the aeroelastic equations via the aerodynamic coefficients. The aeroelastic modes can be
decomposed into symmetric and antisymmetric motions. The lift, drag, and pitching moment coefficients
are influenced by symmetric aeroelastic modes, while the side force, rolling moment, and yawing moment
coefficients are influenced by antisymmetric aeroelastic modes.7

The contributions of the unsteady elastic wing, VCCTEF, and gust aerodynamics to the rigid-body
aerodynamic coefficients can be calculated by summing the contributions of the individual discretized wing
strips, control surfaces, and individual discretized wing, fuselage and horizontal tail strips, respectively. The
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effect of rigid-body motion on the elastic wing and VCCTEF is modeled through the notion of the local
aeroelastic angle of attack, as mentioned above. In order to facilitate the coupling, the aeroservoelastic system
is expressed by a state-space equation with rigid-body motion and orientation as inputs and aerodynamic
coefficient contributions as outputs. The precise form of the state-space equations has been set forth in
previous work.7,12 The aeroservoelastic output equation is given by

Ce
a = Ce

�

xe

ẋe

�

+ Cx

�

xl

ẋl

�

+ Cz

�

zl

żl

�

+ Cg

�

x
g
l

�

(93)

where Ce
a is the aeroservoelastic contribution to the rigid-body aerodynamic coefficients, xe is a vector

containing the aeroelastic modal states, xl is a vector containing all aerodynamic lag states corresponding
to the aeroelastic behavior of the wing, zl is a vector containing all aerodynamic lag states corresponding
to the VCCTEF segments, and x

g
l is a vector containing all aerodynamic lag states corresponding to the

unsteady turbulence. The output matrices Ce, Cx, Cz, and Cg are formulated such that the multiplication
results in the total aerodynamic contributions of the aforementioned states.

The presence of the first term of equation (93) is solely due to the noncirculatory pitching moment due
to angle of attack. As shown in equation (25), this pitching moment depends directly on the local angle of
attack and thereby on the generalized displacement of the wing. All other unsteady aerodynamic forces and
moments depend only on the aerodynamic lag states or their derivatives.

Since the linear aeroservoelastic system is coupled to a nonlinear flight dynamic model, it is possible
to account for quadratic drag due to aeroelastic behavior. In order to do so, it is assumed that the drag
coefficient can be estimated accurately via a drag polar model. The drag polar parameter is derived for
each discretized strip using the local lift and drag coefficients. The result is a diagonal matrix containing
the drag polar parameter of each strip. Using this matrix and the circulatory lift contribution of each
strip, a quadratic induced drag term can be calculated and added to the rigid-body drag coefficient. The
corresponding quadratic equation is given by

Cxx
D = xl

TCxxxl + zl
TCzzzl (94)

where Cxx
D is the quadratic drag contribution, and Cxx and Czz are the corresponding output matrices for

the aeroelastic and VCCTEF aerodynamic lag state vectors, respectively.
The rigid-body flight dynamics are then given by

ẋr = f (xr, ẋr, C
e
a, C

xx
D ) (95)

where f is a function containing the kinematic, dynamic, and aerodynamic equations for the aircraft in
aeroelastic trim state.

VIII. Simulation

Numerical simulations were performed using a nonlinear 6DOF flight dynamic model coupled with the
full-order linear aeroelastic model. All simulations were initialized in steady symmetric straight level flight
at 36,000 ft altitude and Mach 0.797.

A. Numerical Integration

Simulations are performed using the full-order system. The coupled system contains both highly damped
poles due to the aerodynamic lag states and aeroelastic modes at very high frequencies (up to the order of
104 rad/s).

The stiffness that is introduced into the system of differential equations by the aerodynamic lag states
can lead to numerical instability in some, most notably explicit, integration methods. Therefore care must
be taken in selecting the time step in case a conditionally stable time integration scheme is used.

On the other hand, some integration methods, such as the implicit Euler method, introduce numerical
damping, which can lead to numerical stabilization of unstable modes. In order to address both of these
potential issues, Newmark-β31 was selected the as integration method.

By selecting coefficients β = 0.25 and γ = 0.5, the method has a stability region that coincides with
the left half plane, and is O

�

Δt2
�

accurate. In cases where unconditional stability is not required, e.g. for
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simulation of a reduced order model with only poles at limited frequency, higher accuracy can be obtained
by selecting different coefficients.

The coupled system consists of linear second-order differential equations for the elastic wing, linear first-
order differential equations for the aerodynamic lag states, and nonlinear first-order differential equations for
the aircraft dynamics and kinematics. The linear system is integrated using a hybrid scheme that combines
the Newmark-β method for second-order equations with a second-order multi-step method for the linear first-
order equations. In case β = 0.25 and γ = 0.5 are selected, this scheme is equivalent to the trapezoidal rule
with constant acceleration for the second-order equations and constant speed for the first-order equations.
The nonlinear differential equations are integrated using the fourth-order Runge-Kutta scheme.

B. Comparison with Incompressible Results

Figure 15 and 16 show the pitch rate and roll rate responses of the ESAC to symmetric and antisymmetric
VCCTEF inputs, respectively. In both figures the incompressible response curve corresponds to a model of
the ESAC where unsteady aerodynamics for compressible flow are not taken into account in the modeling
of the time-dependent aerodynamic effects. Instead, it is based on the incompressible expressions as given
by Theodorsen4 with steady-state values corrected using the Prandtl-Glauert compressibility correction.

The oscillatory rigid-body modes and the first four elastic modes are indicated in the figures. The
corresponding mode shapes are shown in Figure 17. Several differences can be observed in the frequency
responses of the incompressible and compressible models. In the symmetric case the first mode is damped less
in the compressible case, while elastic modes at higher frequencies are more damped. In the antisymmetric
case the damping of the first mode is similar for both approximations, while the higher frequencies are more
damped in the compressible case.

The first symmetric and antisymmetric modes are both bending modes. The fact that these low frequency
bending modes have relatively low damping in the compressible case corresponds well to the observations
that were made regarding Figure 7.
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Figure 15: Pitch rate frequency response of ESAC to a symmetric semi-sinusoidally shaped VCCTEF input
for incompressible and compressible unsteady aerodynamics approximations
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Figure 16: Roll rate frequency response of ESAC to an antisymmetric semi-sinusoidally shaped VCCTEF
input for incompressible and compressible unsteady aerodynamics approximations

First Symmetric Bending Mode (S1) First Antisymmetric Torsion Mode (A2)

Second Symmetric Bending Mode (S2) First Antisymmetric Torsion Mode (A2)

Figure 17: Modes shapes of the first four elastic wing deformation modes

C. Flight Dynamic Maneuver

Figures 19, 20, and 21 show flight dynamic, elastic wing, and aerodynamic hinge moment responses to a 2
deg antisymmetric VCCTEF doublet of semi-sinusoid shape as shown in Figure 18. The doublet commences
at t = 1 s and changes sign at t = 1.5 s, t = 2 s, and t = 3 s. At t = 4 s the VCCTEF is set to zero deflection.

Figure 20 shows the response of the first four elastic wing deformation modes. The mode shapes corre-
sponding to these modes are shown in Figure 17. Especially the first antisymmetric mode is excited, since
the doublet is an antisymmetric input. In comparison to an unsteady aeroelastic model of the ESAC that
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is based on incompressible with Prandtl-Glauert compressibility correction, the damping of the this elastic
mode is quite low. Consequently, oscillations are sustained well after the VCCTEF is returned to zero de-
flection at t = 4 s. This highlights the need for closed-loop aeroelastic control for flexible vehicles, such as
the ESAC.

As mentioned above, these results were obtained using Newmark-β integration for the aeroservoelastic
system. The contrast with integration methods that add numerical damping, such as the implicit Euler
method, is obvious in simulation of lightly damped modes. In a simulation of the same flight dynamic
maneuver using the implicit Euler method, even the oscillations of the first antisymmetric mode were largely
damped out within several seconds, as can be seen in Figure 22.

As expected, peaks occur in the aerodynamic hinge moment curve at points where the VCCTEF deflection
is changed. This is due to unsteady hinge moment effects induced by the movement of the flap itself. After
the doublet is finished, oscillatory behavior is still present in the hinge moment curve due to the sustained
excitation of the aforementioned elastic wing mode.
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Figure 18: VCCTEF 2 deg antisymmetric semi-sinusoid doublet
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Figure 19: Flight dynamic response to antisymmetric VCCTEF doublet
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Figure 20: Elastic wing response showing displacement of first four elastic modes due to antisymmetric
VCCTEF doublet
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Figure 21: Aerodynamic hinge moment response of flap 5 on left wing to antisymmetric VCCTEF doublet
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Figure 22: Elastic wing response showing displacement of first four elastic modes due to antisymmetric
VCCTEF doublet using implicit Euler integration for the aeroservoelastic system

D. Von Karman Turbulence Response

Figures 23, 24, and 25 show flight dynamic, elastic wing, and aerodynamic hinge moment responses to a Von
Karman vertical turbulence field. The turbulence field has standard deviation 4.7 ft/s and scale length 2500
ft. As such it can be classified as moderate turbulence.

Looking at Figure 23 it can be seen that the 2D turbulence field affects both longitudinal and lateral
dynamics.

The turbulence is switched on at t = 0 s and is switched off at t = 8 s. The second point is well visible
in the elastic response shown in Figure 24. Prior to t = 8 s the wing is in forced excitation and its response
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seems random. After the turbulence field is switched off, the lightly damped first symmetric mode maintains
oscillation at its natural frequency. Its coupling to the rigid-body dynamics can be observed in the pitch
rate and also in the hinge moment shown in Figure 25.
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Figure 23: Flight dynamic gust response
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Figure 24: Elastic wing gust response showing the displacement of the first four elastic modes
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Figure 25: Aerodynamic hinge moment response of flap 5 on left wing

E. High Frequency Gust Response

Figures 26, 27, and 28 show flight dynamic, elastic wing, and aerodynamic hinge moment responses to a
series of 1− cos gusts with amplitude 15 ft/s. The gusts occur between t = 1 s and t = 3 s and last for 0.25
s each. This corresponds to a frequency of 8π rad/s. The gusts are located on the outer half of the right
wing. The remainder of the aircraft does not meet any disturbance.

The antisymmetric nature of the gust field can be observed in Figure 26. A significant roll rate is
achieved. Due to the high frequency of the gusts, a significant excitation of the third and fourth elastic
modes is reached.

Figure 28 shows the hinge moment response of flap 16 on right and left wing. It can clearly be seen that
the flap on the right wing travels through the gust field, where the additional upwash results in a negative
pitching moment. The flap on the left wing is also affected by the gusts through rigid-body and elastic wing
motion.
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Figure 26: Flight dynamic gust response
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Figure 27: Elastic wing gust response showing the displacement of the first four elastic modes
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Figure 28: Aerodynamic hinge moment response of flap 16 on right and left wing

IX. Concluding Remarks

A comprehensive flight dynamic and aeroservoelastic modeling approach for a flexible wing aircraft with
VCCTEF in turbulent air was presented. Unsteady aerodynamics of the flexible wing and flap system
were found using modified aerodynamic strip theory based on quasi-steady vortex-lattice results and indicial
response concepts. Compressibility effects on the unsteady aerodynamics based on the work by Beddoes
and Leishman et al. were taken into account throughout the modeling effort and a comparison was made
with unsteady aerodynamics for incompressible flow corrected by Prandtl-Glauert compressibility correction.
Simulation results, including flight dynamic and elastic responses, and aerodynamic hinge moments, were
shown for flight dynamic maneuvers and gust profiles.

It was found that the modeling approach based on indicial response concepts provides a convenient manner
in which quasi-steady data can be used to model the unsteady aerodynamic behavior of an aircraft with
flexible wing and high-bandwidth control surfaces. Application of the indicial functions involving unsteady
compressibility effects is less computationally demanding than unsteady CFD techniques and can be seen as a
step in between the well-known incompressible unsteady aerodynamics function as formulated by Theodorsen
and more sophisticated CFD solutions that are often computationally intensive and not well-suited for flight
dynamic simulations.
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A. Geometric Parameters

Geometric parameters with f as defined in Figure 11. Numbering according to Theodorsen is maintained.4

T1 =− 1

3
(2 + f2)

�

1− f2 + f cos−1 f (96)

T4 =f
�

1− f2 − cos−1 f (97)

T5 =− (1− f2) + 2f
�

1− f2 cos−1 f − (cos−1)2 (98)

T8 =− 1

3
(1 + 2f2)

�

1− f2 + f cos−1 f (99)

T10 =
�

1− f2 + cos−1 f (100)

T11 =(2− f)
�

1− f2 + (1− 2f) cos−1 f (101)

T12 =2T4 + T11 (102)

B. Noncirculatory Flap Time Constants

Noncirculatory flap time constants according to Hariharan and Leishman.22 The geometric property f is
as defined in Figure 11, M indicates the Mach number, and β the Prandtl-Glauert factor. The T· geometric
coefficients are as defined in Appendix A and the circulatory coefficients are as defined in Section V.
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C. Aerodynamic Lift and Moment Increments

Aerodynamic lift and moment increments according to Hariharan and Leishman.22 The geometric prop-
erty f is as defined in Figure 11 and M indicates the Mach number.
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