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Abstract An integrated guidance law and auto-pilot for autonomous ren-
dezvous towards aerial refueling using the probe-and-drogue system is pre-
sented. For the derivation the rendezvous problem is considered as a differ-
ential game in which the trailing aircraft’s objective is to capture the drogue.
A linear quadratic cost formulation is utilized in order to develop an optimal
control expression for pursuer aircraft elevator, ailerons, and rudder control,
as well as optimal evasive action. Optimal evasive action herein represents
the worst-case drogue movement. Results of numerical simulations using a
longitudinal lateral-directional flight dynamic model of a realistic aircraft are
presented.

1 Introduction

Rendezvous for aerial refueling refers to the connecting of the probe on the
receiver aircraft, and the drogue at the end of the hose on the tanker aircraft,
before commencement of the actual refueling. For a successful rendezvous
both position and velocity must be equal, which is complicated by the move-
ment of the drogue. Due to aerodynamic coupling between tanker aircraft,
drogue, and receiver aircraft the rendezvous is one of the most challenging
maneuvers to perform for pilots.

The emergence of autonomous unmanned aerial vehicles calls for the
development of guidance and control laws that enable autonomous exe-
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cution of the rendezvous for aerial refueling. The problem has been ap-
proached using various methods for robust and adaptive controller design
[Wang et al.(2008), Pachter et al.(1997)], and incorporating sensor systems
[Tandale et al.(2006)].

Owing to similarities to the problem of missile guidance, control methods
based on the concepts of proportional navigation and line of sight angle con-
trol have been proposed [Ochi and Kominami(2005)]. Also originating from
missile guidance is the concept of zero-sum pursuit-evasion differential game-
based guidance laws [Bryson and Ho(1969)]. The method presented in this
paper is based on the formulation of the rendezvous for aerial refueling as
such a zero-sum pursuit-evasion differential game. Within this formulation
the drogue acts as evader and the recipient aircraft as pursuer. The cost of
the zero-sum game consists of the final position and velocity differences be-
tween drogue and recipient aircraft. It has been shown that for the case of
unpredictable evasive action differential game guidance laws surpass optimal
control based guidance laws in terms of performance [Anderson(1981)].

In order to account for control boundaries, weighed quadratic terms are
added to the cost function. These terms act as penalty functions on the
otherwise unbounded control inputs of both pursuer and evader, leading to a
linear quadratic (LQ) differential game formulation [Bryson and Ho(1969)].

Within the zero-sum differential game it is the objective of the pursuer
to minimize the cost, whereas it is the aim of the evader to maximize this
cost. The solution of the game consists of optimal control actions for both
pursuer and evader. The former serves as the autonomous aerial refueling
guidance law, while the latter can be considered a worst-case movement of
the drogue. Hence, the optimal evasive action can be used to give a measure
of the robustness of the guidance law with respect to any possible movement
by the drogue.

The recipient aircraft is represented by a model involving both dynamic
and kinematic states leading to the derivation of an integrated guidance law
and autopilot. In previous work the development of an integrated controller
for missile autopilot guidance motivated by a differential game formulation
has been presented [Shima et al.(2006)]. Application to elevator control for
autonomous rendezvous using a longitudinal flight dynamic model has been
shown as well [Tal and Shima(2015)].

In the current work, the integrated controller commands elevator, ailerons,
and rudder. The concept of a differential games multi-control guidance law
has been presented in the context of a dual-control guidance law for intercep-
tion using missiles with multiple control surfaces [Shima and Golan(2007)].
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2 Dynamics Modeling

A linearized rendezvous model considering movement perpendicular to the
fixed relative horizontal closing speed Vc with which the recipient aircraft is
approaching the drogue is used. The fixed relative horizontal closing speed
leads to a known time of interception tf . An overview of the rendezvous
geometry is given in Figure 1.
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Fig. 1 Rendezvous geometry

The drogue, i.e. evader, has direct control of its acceleration in both the
horizontal and vertical plane. The position is given by double integration of
the corresponding acceleration input. For vertical position

ḧe = amaxe v1 (1)

and equivalently for lateral position

ÿe = amaxe v2 (2)

where amaxe is the maximum magnitude of acceleration per direction, which
is set equal for both directions, with amaxe > 0, and v1 and v2 are normalized
control variables with |vi| ≤ 1 for i ∈ {1, 2}.

By introducing the vertical evader speed Veh and the lateral evader speed
Vey , the evader kinematics can be formulated as a system of first order dif-
ferential equations 

ḣe = Veh
ẏe = Vey
V̇eh = amaxe v1
V̇ey = amaxe v2

(3)
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The aircraft, i.e. pursuer, kinematic and dynamic equations are linearized
around a horizontal symmetric steady flight condition. The state variables
correspond to the state’s deviation from this trim condition.

The aircraft vertical position is given by integration of its vertical speed

ḣp = Vph = V0(θ − α) (4)

where V0 is the total airspeed in trimmed condition, θ is the pitch angle, and α
is the angle of attack. Assuming that V0 is constant, the vertical acceleration
is

V̇ph = V0(θ̇ − α̇) = V0(q − α̇) (5)

where q is the pitch rate. The lateral speed is given by

ẏp = Vpy = V0(ψ + β − α0φ) (6)

where α0 and θ0 correspond to the trimmed angle of attack and pitch angle,
respectively. The sideslip, heading, and roll angles are indicated by β, ψ, and
φ, respectively. The lateral acceleration is then given by

V̇py = V0(ψ̇ + β̇ − α0φ̇) = V0(r + β̇ − α0φ̇) (7)

where r is the yaw rate.
The force and moment contributions of α̇ and β̇ are neglected. It is as-

sumed that the aircraft and flight condition are perfectly symmetrical and
that there is no longitudinal lateral-directional coupling due to engine ro-
tor angular momentum. Consequently the linear system of kinematic and
dynamic equations is uncoupled. The differential equations for the aircraft
dynamics are formulated using dimensional stability and control derivatives.
For the control surface dynamics first order lags with time constant τδ are
assumed. The resulting system of first order equations is given by



ḣp = Vph
ẏp = Vpy
V̇ph = −Zαα− Zqq − Zδeleδele
V̇py = gφ+ Yββ + (Yp − V0α0)p+ Yrr + Yδailδail + Yδrudδrud
φ̇ = p+ θ0r

V0α̇ = Zαα+ (V0 + Zq)q + Zδeleδele
V0β̇ = gφ+ Yββ + Ypp+ (Yr − V0)r + Yδailδail + Yδrudδrud
ṗ = Lββ + Lpp+ Lrr + Lδailδail + Lδrudδrud
q̇ = Mαα+Mqq +Mδeleδele
ṙ = Nββ +Npp+Nrr +Nδailδail +Nδrudδrud

δ̇ele = − 1
τδ
δele + 1

τδ
δmaxele u1

δ̇ail = − 1
τδ
δail + 1

τδ
δmaxail u2

δ̇rud = − 1
τδ
δrud + 1

τδ
δmaxrud u3

(8)
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where p is the roll rate, and δmaxele , δmaxail , and δmaxrud are the maximum elevator,
aileron, and rudder deflection magnitudes, respectively. The inputs u1, u2,
and u3 are normalized control variables with |ui| ≤ 1 for i ∈ {1, 2, 3}.

Several observations can be made regarding the resulting system of dif-
ferential equations. The model is considerably more complicated than the
idealized missile dynamics models that are often used for the application
of differential game-based guidance [Shinar and Shima(2012)], as it is com-
posed of both dynamical and kinematical states leading to an integrated
guidance law and autopilot design. The system is not fully controllable by
u, as is typical for linear aircraft models involving both longitudinal and
lateral-directional dynamic and kinematic states.

An interesting feature is the fact that the aircraft vertical speed is non-
minimum phase with regard to elevator control: The additional lift of a pos-
itive elevator deflection will initially result in a positive vertical acceleration,
after which it leads to pitch down and negative vertical acceleration. Similar
non-minimum phase behavior is exhibited by the response of the lateral speed
to aileron and rudder inputs, due to the direct side-force and subsequent re-
spective roll and yaw rates that these inputs cause. These phenomena are
relevant, as they lead to control reversal during the final part of rendezvous.

A state-space system incorporating both the receiver aircraft (pursuer)
and drogue (evader) dynamics can now be defined. Since the aircraft model
is already formulated including vertical and lateral positions and speeds as
states, the composite system can straightforwardly be formulated as

ẋ = Ax + Bu + Cv (9)

where

x =



hp − he
yp − ye
Vph − Veh
Vpy − Vey

φ
α
β
p
q
r
δele
δail
δrud



, (10)
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A =



02×2 I2×2 02×6 02×3

08×2 08×2

0 −Zα 0 0 −Zq 0
g 0 Yβ Yp − V0α0 0 Yr
0 0 0 1 0 θ0
0 Zα

V0
0 0 1 +

Zq
V0

0
g
V0

0
Yβ
V0

Yp
V0

0 Yr
V0
− 1

0 0 Lβ Lp 0 Lr
0 Mα 0 0 Mq 0
0 0 Nβ Np 0 Nr

−Zδele 0 0
0 Yδail Yδrud
0 0 0

Zδele
V0

0 0

0
Yδail
V0

Yδrud
V0

0 Lδail Lδrud
Mδele 0 0

0 Nδail Nδrud
03×2 03×2 03×6 − 1

τδ
I3×3


,

(11)

B =


010×3

δmaxele

τδ
0 0

0
δmaxail

τδ
0

0 0
δmaxrud

τδ

 , C =

 02×2

−amaxe I2×2

09×2

 (12)

For a successful rendezvous the first four states, vertical and lateral posi-
tion and speed difference, must be nulled. Hence the pursuer is minimizing
these values, whereas the evader is maximizing these values. Both are as-
sumed to have perfect knowledge of the entire state.

The admissible gamespace is limited by several constraints. The states φ,
α, β, p, q, and r are limited by operational limits during the rendezvous.
The aircraft control surface states are limited by their respective maximum
deflection magnitudes.

3 Guidance Law

Three elements are taken into account in the formulation of the linear-
quadratic cost function that is used for guidance law optimization: Terminal
relative position and relative speed contributions, the cost of pursuer control,
and the cost of evader control. The relative position R is the Euclidean dis-
tance between the evader and the pursuer in the vertical-lateral plane and
the relative speed Vr is the Euclidean norm of the difference between their
velocities in the aforementioned plane. The cost function is given by

J =
1

2
R2(tf ) +

QV
2
Vr

2(tf )+

1

2

tf∫
t0

(
α1u1

2(t) + α2u2
2(t) + α3u3

2(t)− β1v12(t)− β2v22(t)
)

dt (13)
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where QV , α1, α2, α3, β1, and β2 are all non-negative weights. Note that if the
weights approach zero an interception guidance law is found. Equivalently,
setting QV →∞ leads to a nulling of relative speed.

3.1 Order Reduction

In order to reduce the order of the problem the terminal cost Z(tf ) is in-
troduced. In order to express the terminal cost the zero-effort vector is used.
Making use of the terminal projection transformation [Bryson and Ho(1969)]
the zero-effort vector is defined as

Z(t) = DΦ(tf , t)x(t) (14)

where

D =
[
I4×4 09×4

]
(15)

and Φ(tf , t) is the transition matrix associated with Eq. (9)

Φ(tf , t) = eAtgo (16)

with

tgo = tf − t (17)

Given the time-derivative of the transition matrix

Φ̇(tf , t) = −Φ(tf , t)A (18)

the time-derivative of the zero-effort vector is

Ż(t) = B̃(tf , t)u(t) + C̃(tf , t)v(t) (19)

where

B̃(tf , t) = DΦ(tf , t)B, C̃(tf , t) = DΦ(tf , t)C (20)

The zero-effort vector includes contributions of both the vertical and lat-
eral position and speed differences. It represents the vertical and lateral po-
sition and speed differences that would be created by the time tf if none of
the parties were to apply any control from time t onward. Z1(t) is referred to
as the vertical zero-effort miss distance (VZEM), Z2(t) is referred to as the
lateral zero-effort miss distance (LZEM), Z3(t) is referred to as the vertical
zero-effort speed difference (VZES), and Z4(t) is referred to as the lateral
zero-effort speed difference (LZES). The zero-effort vector at tf is given by
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Z(tf ) = Dx(tf ) =


x1(tf )
x2(tf )
x3(tf )
x4(tf )

 (21)

Using the zero-effort vector and the definition of the Euclidean norm the
LQ cost function J can now be reformulated as

J =
1

2
ZT (tf )QZ(tf ) +

1

2

tf∫
t0

(
uT (t)αu(t)− vT (t)βv(t)

)
dt (22)

where

Q =

[
I2×2 02×2

02×2 QV I2×2

]
, α =

α1 0 0
0 α2 0
0 0 α3

 , β =

[
β1 0
0 β2

]
(23)

It should be noted that no explicit constraints are defined; the conditions
|ui(t)| ≤ 1 ∀t for i ∈ {1, 2, 3} and |vi(t)| ≤ 1 ∀t for i ∈ {1, 2} as well as
the operational constraints on φ, α, β, p, q, and r are to be satisfied by
appropriate selection of Q, α and β.

3.2 Optimal Control

Using the reduced-order LQ cost function the differential game can now be
solved. The Hamiltonian is given by (time indices are omitted for brevity)

H = L+ λTZf (24)

where

L =
1

2

(
uT (t)αu(t)− vT (t)βv(t)

)
, f = Ż = B̃u + C̃v (25)

The adjoint equation is then given by

λ̇TZ = −
(
∂L

∂Z
+ λTZ

∂f

∂Z

)
= −

(
01×4 + λTZ04×4

)
= 01×4 (26)

and

λTZ(tf ) =
∂
(

1
2ZT (tf )QZ(tf )

)
∂Z

= ZT (tf )Q (27)

which results in

λZ(t) = QZ(tf ) (28)
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In order to find the optimal control law the derivative of the Hamiltonian
with regard to the control input is set to zero

∂H

∂u
= uTα + ZT (tf )QB̃ = 0 (29)

This results in the optimal pursuer control

u∗ = −α−1B̃
T
QZ(tf ) (30)

Similarly it can be shown that the optimal evader control is

v∗ = β−1C̃
T
QZ(tf ) (31)

Integration after the substitution of the expressions for the optimal control
actions into Eq. (19) gives

Z(tf ) = Z(t) + Fαβ(tf , t)Z(tf ) (32)

where

Fαβ(tf , t) =

tf∫
t

−B̃(tf , ξ)α
−1B̃T (tf , ξ)Q + C̃(tf , ξ)β

−1C̃T (tf , ξ)Qdξ (33)

Now the control laws can be written as functions of the current zero-effort
vector as

u∗(t) = −α−1B̃
T

(tf , t)Q (I4×4 − Fαβ(tf , t))
−1

Z(t) (34)

v∗(t) = β−1C̃
T

(tf , t)Q (I4×4 − Fαβ(tf , t))
−1

Z(t) (35)

3.3 Conjugate Point Analysis

Eq. (34) and Eq. (35) signify that a conjugate point exists if the matrix
(I− Fαβ(tf , t)) is singular. In this case the trajectory may not be optimal
going back in time beyond the conjugate point.

Considering that Fαβ → 0 as tgo → 0, (I− Fαβ(tf , t)) → I and conse-
quently ∆ → 1, where ∆ = det (I− Fαβ(tf , t)). Since Fαβ is a continuous
function of t, the optimal LQ differential game solution exists if

∆ = det (I− Fαβ(tf , t)) > 0 ∀t (36)

or equivalently using the analytic expression of the determinant
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∆ = (κ1 + κ2 − κ1κ2 + κ3κ4 − 1) (κ5 + κ6 − κ5κ6 + κ7κ8 − 1) > 0 ∀t
(37)

where

κ1 =

tf∫
t

amaxe
2

β1
φ1,3

2(tf , ξ)−
δmaxele

2

α1τδ2
φ1,11

2(tf , ξ)dξ (38)

κ2 =

tf∫
t

QV a
max
e

2

β1
φ3,3

2(tf , ξ)−
QV δ

max
ele

2

α1τδ2
φ3,11

2(tf , ξ)dξ (39)

κ3 =

tf∫
t

QV a
max
e

2

β1
φ3,3(tf , ξ)φ1,3(tf , ξ)−

QV δ
max
ele

2

α1τδ2
φ3,11(tf , ξ)φ1,11(tf , ξ)dξ

(40)

κ4 =

tf∫
t

amaxe
2

β1
φ3,3(tf , ξ)φ1,3(tf , ξ)−

δmaxele
2

α1τδ2
φ3,11(tf , ξ)φ1,11(tf , ξ)dξ (41)

κ5 =

tf∫
t

amaxe
2

β2
φ2,4

2(tf , ξ)−
δmaxail

2

α2τδ2
φ2,12

2(tf , ξ)−
δmaxrud

2

α3τδ2
φ2,13

2(tf , ξ)dξ (42)

κ6 =

tf∫
t

QV a
max
e

2

β2
φ4,4

2(tf , ξ)−
QV δ

max
ail

2

α2τδ2
φ4,12

2(tf , ξ) (43)

− QV δ
max
rud

2

α3τδ2
φ4,13

2(tf , ξ)dξ

κ7 =

tf∫
t

QV a
max
e

2

β2
φ2,4(tf , ξ)φ4,4(tf , ξ)−

QV δ
max
ail

2

α2τδ2
φ2,12(tf , ξ)φ4,12(tf , ξ)

(44)

− QV δ
max
rud

2

α3τδ2
φ2,13(tf , ξ)φ4,13(tf , ξ)dξ

κ8 =

tf∫
t

amaxe
2

β2
φ2,4(tf , ξ)φ4,4(tf , ξ)−

δmaxail
2

α2τδ2
φ2,12(tf , ξ)φ4,12(tf , ξ) (45)

− δmaxrud
2

α3τδ2
φ2,13(tf , ξ)φ4,13(tf , ξ)dξ

with φi,j(tf , t) the element on the i-th row of the j-th column of Φ(tf , t).
An analytic expression for Φ(tf , t) can be found by performing an inverse

Laplace transform of (sI−A)
−1

, but is too lengthy to be shown here.
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Examination of Eq. (37) - Eq. (45) shows that ∆→ 1 ∀t as µ→∞, where
µ = α1 = α2 = β1 = β2 = β3. The maximum value of ∆ on the closed
interval {tgo ∈ R|0 ≤ tgo ≤ 10} was calculated as a function of µ in order to
assess the existence of an LQ differential game solution on the aforementioned
interval for the case with QV = 0.5, and amaxe = 2 ft/s2 using parameters
corresponding to an F-16 in trimmed wings-level flight at 15,000 ft and 315
KTAS (532 ft/s) as given in Table 1 [Stevens and Lewis(1992)]. The value
for QV was selected such that the rendezvous is completed with minimal
distance error, whereas some speed error is permissible. Results are shown in
Figures 2 and 3. The numerical results shown in the figures conform to the
statements made above regarding the condition µ→∞. It can be seen that
a conjugate point exists for µ < 0.015.

A similar analysis was performed for the interception problem with QV =
0, and amaxe = 2 ft/s2. It was found that in this case a conjugate point exists
only for µ < 1 · 10−5.

Table 1 Parameter values for F-16 longitudinal dynamics model using ft-sec-rad
units

Mα −1.773 Yβ −114.5 Lβ −24.69 Nβ 6.771 τδ 0.0495
Mq −0.932 Yp 35.17 Lp −2.416 Np −0.035 δmaxele 25 π

180
Mδele −7.381 Yr −1060 Lr 0.537 Nr −0.334 δmaxail 21.5 π

180
Zα −362.2 Yδail 5.614 Lδail −29.77 Nδail −1.604 δmaxrud 30 π

180
Zq −32.72 Yδrud 16.39 Lδrud 3.896 Nδrud −3.036
Zδele −43.95 θ0 0.066 V0 532 g 32.17

10
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10
−1

−25

−20

−15

−10

−5

0

5

m
in
(∆
)

µ

Fig. 2 Minimum ∆-values for QV = 0.5, amaxe = 2 ft/s2
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Fig. 3 ∆-values for QV = 0.5, amaxe = 2 ft/s2, 3.1 · 10−3 ≤ µ ≤ 1.0 · 103

3.4 Navigation Gains

By rewriting Eq. (34) the control law can be formulated as a function of the
navigational gains NV ZEM , NLZEM , NV ZES , and NLZES as

u∗(t) =
NV ZEM

τδV0
Z1(t)+

NLZEM

τδV0
Z2(t)+

NV ZES

V0
Z3(t)+

NLZES

V0
Z4(t) (46)

where the navigational gains are defined by (time indices are omitted for
brevity)

NV ZEM =V0

[
δmaxele

φ1,11−φ1,11κ2+QV κ4φ3,11

α1(κ1+κ2−κ1κ2+κ3κ4−1)

02×1

]
(47)

NLZEM =V0

 0

δmaxail
φ2,12−φ2,12κ6+QV κ8φ4,12

α2(κ5+κ6−κ5κ6+κ7κ8−1)

δmaxrud
φ2,13−φ2,13κ6+QV κ8φ4,13

α3(κ5+κ6−κ5κ6+κ7κ8−1)

 (48)

NV ZES =V0

[
δmaxele

QV φ3,11+φ1,11κ3−QV κ1φ3,11

α1τδ(κ1+κ2−κ1κ2+κ3κ4−1)

02×1

]
(49)

NLZES =V0

 0

δmaxail
QV φ4,12+φ2,12κ7−QV κ5φ4,12

α2τδ(κ5+κ6−κ5κ6+κ7κ8−1)

δmaxrud
QV φ3,13+φ2,13κ7−QV κ5φ4,13

α3τδ(κ5+κ6−κ5κ6+κ7κ8−1)

 (50)

The control input u∗ is linear in the zero-effort vector and is bounded if all
navigational gains are bounded, which is the case if and only if no conjugate
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point exists. The denominator of every non-zero element in the navigational
gain matrices contains one of the factors of ∆ as defined in Eq. (37). Since
∆ = 0 at a conjugate point the navigational gains will become unbounded
at such a point. In case a conjugate point exists the unbounded navigational
gains will asymptotically approach ±∞ at the conjugate point and change
sign if the sign of ∆ changes.

Sign changes due to the non-minimum phase dynamics of the aircraft
with regard to elevator control can be observed for all of the elements of
the transition matrix that appear directly in the gains in Eq. (47) - Eq.
(50). The sign changes occur at the point where the contribution by direct
lift due to control surface deflection becomes larger than the contribution of
the resulting angle of attack or side-slip angle. This point occurs at small
values for tgo where the value of κi with i ∈ {1, 2, ..., 8} is approaching zero.
Hence the nominators of the navigational gains are dominated by the terms
that are not multiplied by these values. Consequently, the navigational gains
exhibit a change in sign at approximately the same time as the element of
the transition matrix that occurs in the first term of their nominator.

If QV is set to zero (the interception problem), NV ZES and NLZES are
equal to zero for all tgo.

3.5 Optimal Trajectories

If QV , α, and β are set such that no conjugate point exists, then optimal
trajectories can be calculated by integration of Eq. (19) with u(t) = u∗(t)
and v(t) = v∗(t) as defined in Eq. (34) and Eq. (35), as long as |u∗i (t)| ≤ 1 ∀t
for i ∈ {1, 2, 3} and |v∗i (t)| ≤ 1 ∀t for i ∈ {1, 2}. Since Ż(t) is a linear function
of u(t) and v(t), and u∗(t) and v∗(t) are both linear functions of Z(t); Ż(t)
is also a linear function of Z(t). Consequently, any optimal trajectory Z(t)
obtained using some QV , α, and β forms a linearly dependent set with any
other optimal trajectory that is obtained using the same QV , α, and β, if
their initial conditions Z(0) are linearly dependent, no conjugate point exists,
and the control saturation constraints are not violated.

Due to the fact that a linearized aircraft model is used, the pursuer’s
maximum acceleration is very large. If a negative unit step input is given
to the elevator, an equilibrium for the vertical acceleration V̇ph is obtained

at V̇ph ≈ 500 ft/s2. However, in practice the maximum acceleration is never
obtained by a control law based on a cost function with well tuned weights,
due to the inclusion of u(t) in Eq. (13).

Despite its larger maximum acceleration, the pursuer cannot guarantee a
zero miss vector. This is due to the fact that the pursuer has second order
dynamics, whereas the evader has ideal dynamics and thus can instantly apply
an acceleration. As tgo nears zero the evader applies a large control action.
Due to its higher order dynamics the pursuer is incapable of immediately
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Fig. 4 Vertical optimal trajectories for QV = 0.5, (α1, α2, α3) = (1, 2, 1), (β1, β2) =
(0.75, 0.75), and amaxe = 5 ft/s2
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Fig. 5 Lateral optimal trajectories for QV = 0.5, (α1, α2, α3) = (1, 2, 1), (β1, β2) =
(0.75, 0.75), and amaxe = 5 ft/s2

responding to the evader acceleration, resulting in an increase in miss distance
and miss speed.

Figures 4 and 5 show optimal trajectories for QV = 0.5, (α1, α2, α3) =
(1, 2, 1), (β1, β2) = (0.75, 0.75), and amaxe = 5 ft/s2. Again QV is selected such
that rendezvous is achieved with minimum miss distance, while some speed
difference is acceptable. The weight on aileron control action is increased in
order to keep the roll angle within reasonable limits. Finally, β and amaxe are
chosen such that no conjugate point occurs, so that the obtained trajectory
is optimal.
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It should be noted that the vertical optimal trajectories in Figure 4 can-
not be directly related to the lateral optimal trajectories in Figure 5. Due to
decoupling of longitudinal and lateral-directional dynamics, there is no lon-
gitudinal control action due to lateral-directional states and vice versa. This
is evidenced by the zero-valued elements of the navigation gains, Eq. (47) -
Eq. (50), and results in uncoupled vertical and lateral optimal trajectories.

4 Simulation Results

In order to assess the performance of the guidance law two types of sim-
ulations were performed: The first type involves the LQ differential game
guidance laws for both evader and pursuer, whereas the second type involves
a burst noise signal as evader control.

4.1 Optimal Evader Guidance

Figures 6 and 7 show trajectory simulations corresponding to Figures 4 and
5. The simulation is initialized with the drogue located 100 ft above and 25
ft to the right of the pursuer aircraft. In order to prevent the occurrence of a
conjugate point, the control weights α and β cannot be decreased indefinitely,
as described in Section 3.3. This causes both the evader and pursuer control
inputs to remain small. The pursuer is however able to achieve small miss
distance and speed. The terminal vertical and lateral distance are respectively
0.22 ft and -0.0093 ft, and the terminal vertical and lateral speed are 0.13
ft/s and 0.17 ft/s. The same values can also be found at tgo = 0 on the lines
corresponding to V ZEM(tgo = 10) = −100 ft in Figure 4 and LZEM(tgo =
10) = −25 ft in Figure 5. Vertical and lateral distance are reduced smoothly,
while the angle of attack, sideslip angle, roll angle, and rotation rates remain
well within operational limits.

4.2 Random Evader Guidance

For the simulation using burst noise evader control to mimic accelerations due
to atmospheric turbulence, the evader control signal is divided into blocks of
0.4 s. Each block consists of a Gaussian white noise signal with σ = 0.15 and
µ randomly selected to be either -0.5 or 0.5 separately for vertical and lateral
acceleration.

An example of a simulation run using QV = 0.5, (α1, α2, α3) = (1, 2, 1),
(β1, β2) = (0.75, 0.75), and amaxe = 5 ft/s2 and starting at -100 ft vertical
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Fig. 6 Optimal evader and pursuer guidance trajectory for QV = 0.5, (α1, α2, α3) =
(1, 2, 1), (β1, β2) = (0.75, 0.75), and amaxe = 5 ft/s2

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t
go

 [s]

 

 
δ

ele
 [deg]

δ
ail

 [deg]

δ
rud

 [deg]

0 2 4 6 8 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

t
go

 [s]

 

 
u

1
 [−]

u
2
 [−]

u
3
 [−]

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10

x 10
−3

t
go

 [s]

 

 
v

1
 [−]

v
2
 [−]

Fig. 7 Optimal evader control surface deflection and control inputs, and pursuer
control inputs for QV = 0.5, (α1, α2, α3) = (1, 2, 1), (β1, β2) = (0.75, 0.75), and
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distance and -25 ft lateral distance is shown in Figures 8 and 9. It can clearly
be seen that the evader control action is much larger than for the optimal
evasion guidance. Consequently, a larger control action is also applied by the
pursuer. The condition |ui| ≤ 1 for i ∈ {1, 2, 3} is still satisfied though.

Larger angle of attack, sideslip angle, and roll angle are reached, due to the
increase in control action. Also the roll rate reaches rather large values, but
does reduce during the final part of the trajectory. However, for runs in which
the evader control had several successive blocks with equal µ values towards
the end of the trajectory larger terminal rotation rates and roll angles were
observed.

A 10,000 run Monte Carlo simulation was performed using the burst noise
evader control signal and QV = 0.5, (α1, α2, α3) = (1, 2, 1), (β1, β2) =
(0.75, 0.75), and amaxe = 5 ft/s2. Accumulated terminal total distance and
total relative speed are shown in Figure 10. These values are defined by the
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Fig. 8 Random evader and optimal pursuer guidance trajectory for QV = 0.5,
(α1, α2, α3) = (1, 2, 1), (β1, β2) = (0.75, 0.75), and amaxe = 5 ft/s2

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

t
go

 [s]

 

 

δ
ele

 [deg]

δ
ail

 [deg]

δ
rud

 [deg]

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t
go

 [s]

 

 

u
1
 [−]

u
2
 [−]

u
3
 [−]

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t
go

 [s]

 

 

v
1
 [−]

v
2
 [−]

Fig. 9 Random evader control surface deflection and control inputs, and pursuer
control inputs for QV = 0.5, (α1, α2, α3) = (1, 2, 1), (β1, β2) = (0.75, 0.75), and
amaxe = 5 ft/s2

Euclidean norm of their respective vertical and lateral components. In all of
the runs the magnitude of the terminal distance is below 0.50 ft, and the mag-
nitude of the terminal speed is below 0.30 ft/s. The mean terminal distance
is 0.22 ft, and the mean terminal speed is 0.20 ft/s. The terminal distance
and speed results are negatively correlated with a Kendall’s τ value of -0.23
(p < 1 · 10−100).

5 Concluding Remarks

In this article LQ differential game-based guidance was presented to be a
viable option for control of an aircraft during refueling rendezvous. The con-
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Fig. 10 Accumulated properties of Monte Carlo simulation results using QV = 0.5,
(α1, α2, α3) = (1, 2, 1), (β1, β2) = (0.75, 0.75), and amaxe = 5 ft/s2, and burst noise
evader control

trol method is capable of dealing with the complexity of the dynamics. It is
however not able to guarantee zero miss for the rendezvous problem.

The results of a Monte Carlo simulation using burst noise evader control
were presented. Results show promise, although there were issues with large
aircraft rotations and rotation rates. Inclusion of these state variables in the
cost function could potentially be a way to mitigate these issues.

This article showed an initial study along with practical results. A more
elaborate dynamics model will result in more realistic results. A non-linear
6 degree of freedom flight dynamic model could be used to study the effects
of longitudinal lateral-directional coupling. During this research the probe
position was assumed to coincide with the aircraft center of gravity, thus
neglecting the influence of aircraft rotation on the miss.

Further research into the movement of the drogue is also recommended.
The application of realistic turbulence models and the addition of a coupling
that simulates the effect of the wake of the drogue on the receiver aircraft are
recommended for the purpose of obtaining more accurate simulation results.
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